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Abstract

Causality is a complex concept, which roots its developments across several

fields, such as statistics, economics, epidemiology, computer science, and phi-

losophy. In recent years, the study of causal relationships has become a crucial

part of the Artificial Intelligence community, as causality can be a key tool for

overcoming some limitations of correlation-based Machine Learning systems.

Causality research can generally be divided into two main branches, that is,

causal discovery and causal inference. The former focuses on obtaining causal

knowledge directly from observational data. The latter aims to estimate the

impact deriving from a change of a certain variable over an outcome of inter-

est. This article aims at covering several methodologies that have been devel-

oped for both tasks. This survey does not only focus on theoretical aspects. But

also provides a practical toolkit for interested researchers and practitioners,

including software, datasets, and running examples.

This article is categorized under:

Algorithmic Development > Causality Discovery

Fundamental Concepts of Data and Knowledge > Explainable AI

Technologies > Machine Learning
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1 | INTRODUCTION

From the very beginning, the study of nature drove human knowledge. In particular, the search for causes of natural
phenomena animated several philosophers in Ancient Greece, such as Plato or Aristotle. For instance, in Plato (1961),
the so-called “inquiry into Nature” consisted in a quest for “the causes of each thing; why each thing comes into exis-
tence, why it goes out of existence, why it exists”. Similarly, nowadays, the study of causality covers different disci-
plines, aiming to answer “Why?” questions. A well-known mantra in these fields is that correlation does not imply
causation. In general, assuming that if there is a correlation, there is also causation is a fallacy due to omitted data or
links for which (biased) human reasoning leads to erroneous conclusions. The same goes for the opposite relation:
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causation does not imply correlation. There are cases in which, although there is a strong causal relationship between
events, there is no evidence of correlation in a specific sample. There are many examples of causal fallacies; a notorious
one dates back to Ancient Greece, that is, the Aristotelian theory of spontaneous generation (Comandé, 2018).
According to this theory, some organisms could be generated from inanimate matter. Despite its wrong conclusions,
this thesis was deeply empirical, as it was developed after observing that flies appeared in the presence of rotting meat.
Only, in the 19th century, this theory was falsified by Pasteur. Similarly, modern data mining techniques could be prone
to the same fallacies as they are built over correlations among variables.

The fact that artificial intelligence (AI) systems are based on simple associations is problematic, as they are becom-
ing ubiquitous in daily human activities. As a consequence, an urge for trustworthy machine learning (ML) tools arose.
Due to this, the scientific community has made a considerable effort to study causality, shifting the focus from philoso-
phy and empirical experiments to AI and ML domains. As a fact, causality is a potential tool to solve some of the cur-
rent ML limitations (Pearl, 2018).

However, given its inherent multi-disciplinary history, the study of causality is fragmented. Several contributions
came from different fields, such as epidemiology, economics, statistics, computer science, and so forth. Still, two main
tasks can be distinguished within the realm of causality: causal discovery and causal inference. Starting from a set of
observational data, the former tries to infer the causal relationship across the different variables in the dataset. The lat-
ter focuses on testing whether two variables are related and assessing the impact of one on the other. Clearly, these two
tasks are antipodal: on the one hand, causal discovery does not assume any relationship among involved variables;
rather, it is inferred directly from a set of data. On the other hand, causal inference assumes a relationship among vari-
ables and tries to test and quantify the actual relationship in the available data.

Given that the study of causality has always been of interest for many scientific fields, a few attempts to review the
state of the art in causality have been proposed in the past, each of them focusing on specific aspects or application
areas. Table 1 provides a summary of existing surveys and their topics. We distinguish theory, datasets, tools, metrics,
and examples for both causal discovery and causal inference.

In light of this, the present work has the ambitious goal of covering all of the aspects (theory, datasets, software
tools, evaluation metrics, and running examples) for the main techniques of causal discovery and causal inference. As
such, it should be an initial reference for both researchers and practitioners interested in the main pointers to method-
ologies, data, and tools for causal discovery and causal inference. A companion website1 supplements this survey with
an updated list of datasets, tools, and practical examples (with scripts in Python and R).

The paper is structured as follows. In Section 2, some basic definitions and notations are introduced. In Section 3,
causal discovery techniques, tools, datasets, metrics, and examples are presented, organized by data type (cross-sec-
tional, time-series, longitudinal). Section 4 covers causal inference techniques for several causal effects, tools, datasets,
and a running example. Some remarks regarding the intersection between ML and causality are presented in Section 5,
where some of the current open issues are also highlighted. Finally, conclusions are drawn.

2 | DEFINITIONS AND NOTATIONS

Causality can be defined as the influence by which an event contributes to the production of other events. The cause is
responsible for creating the effect, and the effect is a consequence of the cause taking place. For instance, if we consider
two different events A and B as an example, where the latter is a consequence of the former, A is a necessary require-
ment for B to exist, but B is not required for A to happen. Therefore, studying causality means understanding how dif-
ferent events, involving different variables, are related among themselves.

It is important to note that causality is a rather broad concept and it covers different fields. It combines statistics,
machine learning, data mining, and several other quantitative disciplines to search for potential cause–effect relation-
ships in observational data (Guo et al., 2020). As previously described, it is typically divided into causal discovery and
causal inference. Causal discovery is responsible for analyzing and creating models that illustrate the relationships
inherent in the data. Causal inference aims to study the possible effects of altering a given system (Yao et al., 2021).

Generally speaking, causal models are “mathematical models representing causal relationships within an individual
system or population” (Hitchcock, 2020). Causal relationships entail the probabilistic (in)dependence of variables, and
the effects of interventions (change on some variables) or hypothetical interventions, such as counterfactual claims.

We introduce in this section some of the main causal models, starting from the necessary background on graphs, as
they are a powerful tool to represent visually the relationships across variables in a system. The following definitions
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are pretty self-explanatory and can be found in several books covering causality, such as Pearl (2009), Peters et al. (2017),
and Spirtes et al. (2000).

A graph G¼ V,Eð Þ is defined by a set of nodes (or vertices) V and a set of edges
E ⊆ U ,Vf g,Mð Þ j U,V �V,U≠V ,M �Mf g, where M is a set of marks (or labels). In particular, an edge can be mar-
ked as directed, undirected, or bi-directed, respectively written as U!V or V!U, U�V , and U$V . Nodes U and V
are said adjacent. The edge relation E is actually a partial function, that is, no more than one mark is assigned to adja-
cent nodes. A graph G is directed if all the edges are directed. It is a pattern if each edge is either directed or undirected.
A node U �V is a parent of another node V �V if U!V � E. The node V is said to be a child of node U. We write
Pa Vð Þ for the set of parents of V , and Ch Uð Þ for the set of children of U. A (acyclic) path in G is a sequence of distinct
vertices V1,…,Vn such that an edge Vj,Vjþ1

� �
,Mj

� �
between two consecutive vertices is in E, for j¼ 1,…,n�1. When

all the edges are directed as Vj!Vjþ1, the path is called a directed path. In such a case, the node V 1 is called an ances-
tor of Vn, while Vn is called a descendant of V1. The set of all the ancestors of V is denoted as An Vð Þ while the set of
descendants is written as De Vð Þ. Notice that V �An Vð Þ and V �De Vð Þ. A direct graph is called a directed acyclic graph
(DAG) if there is no directed cycle, that is, there exists no pair of vertices V ≠U with a directed path from V to U and
from U to V .

DAGs were used by Pearl (1985) as a graphical representation for a constrained joint probability distribution of a
collection of random variables. Let us consider p random variables X¼ X1,…,Xp

� �
with joint distribution P Xð Þ. Let

P XijSð Þ be the marginal distribution of Xi conditional to S⊆X.

Definition 1. Given a DAG G¼ X ,Eð Þ, the random variables X form a Bayesian network with respect to G if:

P Xð Þ¼
Y
X � X

P X jPa Xð Þð Þ ð1Þ

Bayesian networks are graphical representations of probabilistic relations among variables, where nodes represent the
variables themselves, while edges represent the conditional dependencies among the involved variables. It is worth
noticing that such a representation is convenient, as it allows to clearly model how the variables are related in the sys-
tem. For example, let us consider the well-known example about kidney stones, where one is interested in understand-
ing how drug usage influences the recovery of patients. Let T be a binary variable of treatment (treated/not treated),
and Y the outcome (recovered/unrecovered), such that T!Y . Let us also consider some confounding variable U , such
that U!T and U!Y . For instance, U could be the age of the patient or the size of the kidney stones or any other fac-
tor that might affect both the access to the treatment and the ability to recover. This set of information can be represen-
ted through the DAG shown in Figure 1.

The factorization formula (1) is equivalent for DAGs (Pearl, 1989) to the following Markov condition, stating that a
variable is conditionally independent (⊥⊥ ) of each of its non-descendants, given its parents.

T Y

U

T Y

U

FIGURE 1 The kidney stones example represented as a DAG: T is the treatment indicator, Y is the outcome, and U is a confounder
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Definition 2. (Markov Condition) Given a DAG G¼ X ,Eð Þ, the random variables X satisfy the Markov Con-
dition if for every X �X , X ⊥⊥ Xn De Xð Þ[Pa Xð Þð Þ jPa Xð Þ.

The Markov Condition is not sufficient to read off arbitrary conditional (in)dependencies entailed by a Bayesian net-
work. For this, we need d-separation. Let us first introduce the notion of blocking set.

Definition 3. (Blocking set) A path V1,…,Vn in a DAG G is blocked by a set of nodes Z (not containing nei-
ther V 1 nor Vn) if there exists a node Vk in the path such that one of the following conditions hold:

(i) Vk is a non-collider, that is, Vk�1!Vk!Vkþ1 or Vk�1 Vk Vkþ1 or Vk�1 Vk!Vkþ1,
and Vk �Z;

(ii) Vk is a collider, that is, Vk�1!Vk Vkþ1, and De Vkð Þ\Z¼;, that is, neither Vk nor any of its
descendants is in Z.

Definition 4. (d-separation) In a DAG G, we say that two sets of nodes L and M are d-separated by a third
set of nodes Z, where L, M and Z are pairwise disjoint, if Z is blocking all the paths between nodes in L and
M. This is denoted as: L⊥ G M jZ.

For example, the variable Y d-separates X and Z in the DAG of Figure 2. The factorization formula (1) is also equiv-
alent for DAGs to the Global Markov Condition (Pearl, 1989),

Definition 5. (Global Markov Condition) Given a DAG G¼ X ,Eð Þ, the random variables X satisfy the Global
Markov Condition if for every pairwise disjoint L,M,Z ⊆X , if L⊥ G M jZ then L⊥⊥ M jZ.

The Faithfulness assumption reverses the direction of the above implication, so that conditionally independent vari-
ables are actually d-separated in the graph.

Definition 6. (Faithfulness) Given a DAG G¼ X ,Eð Þ, the random variables X satisfy the Faithfulness
assumption if for every pairwise disjoint L,M,Z ⊆X , if L⊥⊥ M jZ then L⊥ G M jZ.

Finally, the assumption of Causal Sufficiency states that all the common causes of a pair of nodes are measured.
Although most methods rely on this assumption, it cannot always be satisfied. Due to this, some methods model the
existence of latent variables.

Definition 7. (Causal Sufficiency) For a pair of observed variables X and Y , all their common causes must
also be observed in the data (and modeled in a graph G).

Edges in the Bayesian network model conditional probabilities (condition on observing), but they do not necessarily
represent causal effects (intervention). Intuitively, a variable X has a causal effect on Y if manipulating X changes the
distribution of Y . Causal Bayesian network extends the factorization formula (1) to account for do-interventions:
P Xjdo W¼wð Þð Þ¼Q

X � XnWP XjPa Xð Þð Þ1W¼w . The do-operator, denoted as do W ¼wð Þ and introduced by Pearl (1995),
represents the symbolic operation of setting the definition W to the constant value w (atomic intervention). Intervention
distributions P X j do W ¼wð Þð are not necessarily equivalent to conditional distributions P X jW ¼wð Þ. Contrasted with
this stochastic approach to causality (Pearl, 2009, sect. 1.4), there is the Laplacian's approach based on functional equa-
tions. We recall next the Structural Causal Models.

X Y Z

FIGURE 2 Example d-separation: Y d-separates X and Z
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Definition 8. (Structural Causal Model) Given a DAG G¼ X ,Eð Þ, a Structural Causal Model (SCM) defines
the (endogenous) random variables X as functions of their parents:

Xi ≔ f i Pa Xið Þ,Uið Þ, i¼ 1,…,p

and of (exogenous) independent random variables U1,…,Up.
An assignment of values to the exogenous variables uniquely determines the values of all endogenous variables.

Thus, a probability distribution P0 over U1,…,Up induces a unique probability distribution P over X (entailed
distribution).

An SCM is a Causal Bayesian network if interventions are modeled as follows (Peters et al., 2017).

Definition 9. (Intervention distribution) The probability P X jdo W ¼wð Þð Þ over a SCM is the distribution
entailed by the SCM obtained by replacing, for Xk ¼wk in W ¼w, the definition Xk ≔ f k Pa Xkð Þ,Ukð Þ
with Xk ≔wk.

Let us reconsider the kidney stones example. Performing a do-operations on the treatment variable consists of
removing all the incoming links on the node T. Graphically, this is depicted in Figure 3. The causal effect of drug use
can then be measured by comparing the intervention distributions P Y ¼ 1jdo T¼ 1ð Þð Þ and P Y ¼ 1jdo T¼ 0ð Þð Þ.

Another well-known method for estimating causal effects is the potential outcome (PO) model, also known as
Rubin causal model (RCM), as defined in Holland (1986). Introduced in Rubin (1974), it is very popular in economics
and social sciences, and logically equivalent to SCM (Pearl, 2009). Unless stated otherwise, we restrict to a binary treat-
ment. The PO model assumes random variables X,Y 0,Y 1,T, where X are observed covariates about atomic research
objects, called units or individuals; Y 1 is the outcome after being treated; Y 0 is the outcome after not being treated; and
T is the actual intervention, with T¼ 1 for treated and T¼ 0 for not treated. The observed outcome
is Y ¼YT ¼Y 0þT � Y 1�Y 0ð Þ.

Definition 10. (Potential outcome) The potential outcome for unit i given the treatment t� 0,1f g, written Y t,i

is the value of Y t for the unit i after it is treated as t. The observed outcome is Y i¼Y 0,iþTi � Y 1,i�Y 0,ið Þ.

The observed outcome is the one for the actual treatment of the unit. The counterfactual outcome is the one for the
opposite treatment. In the kidney stones example, a patient (a unit) can either take the drug or not. Therefore, only one
of the two potential outcomes is observed. The main problem in causal inference is to estimate the causal effect of the
treatment over the outcome.

3 | CAUSAL DISCOVERY

In this section, we consider the problem of learning causal relationships among variables from observational data. We survey
methods and tools to solve causal discovery and metrics to evaluate methods and public datasets to experiment with.

T Y

U

FIGURE 3 Example of a do-operation performed on the variable T in the kidney stones example
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Depending on how a causal algorithm is constructed, it can be classified as either constraint-based or score-based.
This type of classification is usually applied to Bayesian-like methods, but it can be extrapolated to other methods, pro-
vided they have a similar structure.

Constraint-based algorithms employ independence tests to identify a set of edge constraints for the graph using
observational data, for example, using the G2 test (Spirtes et al., 2000). Further rules determine then the direction of the
found relationships. In exceptional cases, the rule phase is skipped to create undirected graphs. These graphs are usu-
ally local, meaning they only convey a particular node's (undirected) relationships.

Score-based algorithms assign a relevance score to candidate graphs through some adjustment measures, such as the
Bayesian Information Criterion (BIC). However, these algorithms are computationally expensive since they have to
enumerate (and score) every possible graph among the given variables. In addition, greedy heuristics are applied to
restrict the number of candidates.

The section is structured by considering observational data, namely cross-sectional, time-series, and longitudinal
data. The causal discovery methods, in fact, significantly depend on the type of data under analysis.

3.1 | Cross-sectional data

The search of causal relationships in cross-sectional data is one of the most investigated causal tasks.

Definition 11. (Cross-sectional data) Observation of subjects at one point or period of time, or for which the
analysis has no regard to differences in time among the observations.

This type of data is characterized by the fact that they are collected through the observation of several subjects
simultaneously, this being not considered a study variable. These types of data are usually analyzed by comparing dif-
ferences between subjects. Variables can have continuous, discrete, binary, or text data types. An excerpt is shown in
Table 2.

The usage of this type of data for causal discovery has a significant downside. Since it represents a single point in
time, it is not possible to exploit causal precedence (A causes B if A happens before B). This implies that to find the rela-
tionships' direction, it is necessary to apply an extra step. Various methods exist, covering all types of variables (binary,
discrete, continuous, and mixed).

Perhaps the most known constraint-based causal discovery algorithm is PC (named after its authors, Peter and
Clark; Spirtes et al., 2000). It relies upon the faithfulness assumption to create the models, meaning that all indepen-
dencies must obey the d-separation criterion (Section 2). Like most constraint-based methods, this methodology con-
sists of two phases: searching for (in)dependencies (also called skeleton2 phase) and orienting dependencies.

In the first phase, the algorithm starts with a fully connected undirected graph. For each pair of adjacent variables
A and B, it tests if the conditional independence A⊥⊥ B jC for a set C of variables is all adjacent to A (or, equivalently, all
adjacent to B). Tests start with C¼; (unconditional independence) and iterate over sets of increasing size. If condi-
tional independence holds, the undirected edge between A and B is removed.

TABLE 2 Excerpt from the abalone cross-sectional dataset

Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

M 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15

M 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7

F 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9

M 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10

I 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7

I 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8

F 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20

F 0.545 0.425 0.125 0.768 0.294 0.1495 0.26 16
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The orientation phase applies a number of rules to direct edges (Spirtes et al., 2000):

1. Consider variables A,B,C such that A�B�C, namely A and B, B and C are adjacent, but A and C are not adjacent,
that is, it holds in the skeleton phase that A⊥⊥ C jD for some D. If B =2D, we orient the edges as A!B C. The triple
A,B,C is called a v-structure;

2. If there is a directed edge A!B, and B and C are adjacent (B�C), but A and C are not adjacent, then B�C is ori-
ented as B!C; and

3. If there is a direct path between A and B and an undirected edge between A and B, orient A�B as A!B.

PC-stable (Colombo & Maathuis, 2014) tackles a known problem inherent to PC known as order dependence. PC out-
put depends on the order in which the variables are analyzed in the skeleton phase. This means that, if we have a
order1 Vð Þ¼ A,B,C,D,Ef g and order2 Vð Þ¼ A,D,B,E,Cf g, the resulting skeletons will not be the same. PC-stable tackles
this by saving discarded nodes in a separate list instead of removing them right away, at each iteration (with a given
size of C). The saved nodes are only removed permanently in the next iteration. This way, removing edges is no longer
affected by the order of the independence tests at an iteration.

Another variant conservative PC. After creating the skeleton, this algorithm tests every potential v-structure X�Y �Z by
checking if X ⊥⊥ Z jN where N includes all the neighbors of X and Z. If Y is not in all the separating sets or there are no
variables in the set, X�Y �Z is marked as ambiguous, and it is not directed. On the other hand, if Y is not in any sepa-
rating set, the method continues as PC.

Although PC (and its variants) is a powerful tool to uncover causal relationships, it does not scale to high-
dimensional data. For example, in the PC-select (sometimes called PC-simple) method (Bühlmann et al., 2010), the sec-
ond phase is removed, and the conditional independence test is only applied to a target variable. Furthermore, because
the method does not include an orientation phase, the output is an undirected graph.

Another strategy to tackle high dimensional data is to search for causal relations only locally to a target variable.
The max–min parents and children algorithm (MMPC; Tsamardinos et al., 2006) adopts this approach using a Min-Max
heuristic as a conditional independence test.

Although PC is considered as a benchmark algorithm for this type of data, it assumes causal sufficiency (Definition 7),
meaning that it does not allow for open systems (systems with latent variables). For cases where the causal assumption can-
not be fulfilled, FCI can be used (Spirtes et al., 1995). This method applies the same two phases of PC: the skeleton and ori-
entation phases. In the skeleton phase, FCI applies a conditional independence test to find all the potential causal
relationships. It is in the second phase that FCI differs the most from PC: instead of assuming that a relationship must have
a direction (Glymour et al., 2019), the method tests possible d-separations X ⊥⊥Y jZ in the skeleton. If there is at least a var-
iable in Z that d-separates the edge, then it is removed. After this, FCI applies several rules to direct the edges
(Spirtes, 2001). FCI also differs from PC in the way it represents the relationships. Instead of two types of relationships
(! and �), FCI current implementations have four:

• X!Y that represents X causes Y;
• X$Y that represents that there is unmeasured confounders from both variables;
• X�!Y that represents either X causes Y or there is unmeasured confounders from both variables;
• X���Y can represent: (1) X causes Y, (2) Y causes X, (3) there is unmeasured confounders from both variables,

(4) X causes Y and there are unmeasured confounders from both variables or (5) Y causes X and there are
unmeasured confounders from both variables.

The Anytime FCI is a slight modification of FCI that restricts the maximum number of variables in the separation
set used to perform the conditional independence tests to a user-defined threshold.

The Adaptive Anytime FCI (Colombo et al., 2012) is similar to Anytime FCI in the way that it restrains the number
of variables in the separation set. The critical difference is that, instead of the user defining this maximum, it is calcu-
lated by the algorithm, using K ¼maxi adj C1,Xið Þj�1ð Þ, in where C1 represents the initial skeleton, Xi a vertice of C1

and adj represents the list of adjacencies from Xi in C1.
FCI and its variants can benefit from data preparation according to the Joint Causal Inference (JCI; Mooij

et al., 2020) approach. This method extracts the context from several datasets, thus creating a pooled dataset where a
traditional causal discovery method can be applied. This allows the generated model to encapsulate both information
about the variables and the system from where these variables were measured. It is essential to understand that JCI is
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not a causal discovery method but a tool to prepare the data for it. The authors advocate its use with any causal discov-
ery method but suggest its use with FCI specifically (hence FCI–JCI).

The Really Fast Causal Inference (RFCI; Colombo et al., 2012) is another FCI-like method that performs an addi-
tional test to the conditional independences before the v-structures phase: in this extra phase, the algorithm checks
every unshielded triplet X�Y �Z and examines X ⊥⊥Y jZ and Y ⊥⊥ Z jX . If this holds and Y is not in the separating set
of X and Z, then this triplet is directed as X!Y Z.

The RFCI-BSC (Jabbari et al., 2017) is a modification of RFCI, in where the Bayesian Scores Constraints (BSC) is
used as a conditional independence test.

The Greedy Equivalence Search (GES; Chickering, 2002) is a score Bayesian-based method. It scales to high-
dimensional data since it does not consider all existing patterns. This algorithm first adds new edges between two nodes
X and Y, if these nodes are non-adjacent and there is no neighbor of Y that is not adjacent to X. Besides this, it also
directs every edge of neighbor T of Y and not adjacent to X as T!Y . Second, the method removes the best link in each
iteration using the following criteria: it deletes every edge X�Y or X!Y if there is a subset of neighbors of Y , Z that
is adjacent to X . Besides, the algorithm transforms all edges Z�Y as Z!Y and all edges X�Z as X!Z.

The Greedy Interventional Equivalence Search (GIES; Hauser & Bühlmann, 2012) is an improvement of GES.
Besides adding and removing edges, this method has a third phase. In this phase, the algorithm elongates the DAG
sequence, continuously modifying the original graph without altering the graph's skeleton. This new graph has the
same number of edges and can be transformed into the original one by only changing one arrow.

The Fast Greedy Equivalence Search (FGS or FGES; Ramsey et al., 2017) is another modification of GES that uses
parallelization to optimize the runtime of the algorithm.

The GFCI (Ogarrio et al., 2016) is a combination between the FGES and FCI. In this new method, both the skeleton
and orientation phases of the pair are used: first, the skeleton phase of FGES is applied to the data, and then FCI is used
to perfect the skeleton. The same happens in the orientation phase: initially, the algorithm accesses all the directed
edges using FGES. This information is given to FCI, so it can use it to correct the edges' direction further.

3.1.1 | Software tools

The three most known tools/libraries for causal discovery in cross-sectional data are pcalg, bnlearn, and Tetrad.
Beginning with pcalg (Kalisch et al., 2012), this package has implementations of several causal methods, such as

PC (original, conservative, and stable versions), GES, GIES, GDS, AGES, FCI (original, Anytime FCI, Adaptive Anytime
FCI, and FCI–JCI, FCI+, and RFCI). Depending on the type of data used, this package offers default conditional inde-
pendence tests for binary (G2 test), discrete (G2 test), and continuous (Fisher's z-transformation) data. Moreover, it is
possible to adapt other conditional dependence tests to be used in this framework. For score-based methods (such as
GES), pcalg includes the ℓ0-penalized Gaussian maximum likelihood estimator for both discrete and continuous data.

bnlearn is a widely known and used R package (Scutari, 2010). This package provides an implementation for PC stable
and MMPC, and it is possible to accommodate discrete, continuous, and mixed data by changing the conditional independence
test. Bnlearn implements several conditional independence tests. For discrete data, bnlearn has the following tests available:
mutual information (information-theoretic distance measure), shrinkage estimator for the mutual information (Hausser &
Strimmer, 2009), and Pearson's χ2 (classical version for contingency tables). For continuous data, the Pearson's linear cor-
relation, Fisher's Z (transformation of the linear correlation with asymptotic normal distribution), mutual information
(information-theoretic distance measure) and shrinkage estimator for the mutual information (Ledoit & Wolf, 2003) are
available. Finally, for mixed data, mutual information (information-theoretic distance measure) is available.

Finally, Tetrad (Ramsey et al., 2018) is one of the most complete graphical tools for cross-sectional causal discovery.
This tool implements the following methods: FCI, RFCI-BSC, FGES, GFCI, PC, and RFCI. Tetrad's methods can be
applied in continuous, discrete, and mixed data by choosing the correspondent independence tests/score methods. For
constraint-based algorithms, Tetrad also implements the following conditional independence tests. For discrete data, the con-
ditional Gaussian test, χ2 test, degenerate Gaussian likelihood ratio test, G2 test, and probabilistic test are available. For
continuous data, Tetrad presents the following tests: conditional correlation independence, conditional gaussian test,
degenerate Gaussian likelihood ratio test, fisher Z test, and kernel conditional independence. Finally, the following tests
are available for mixed data: conditional gaussian test and degenerate Gaussian likelihood ratio test. For score-based
causal algorithms, Tetrad also offers several scoring methods. For discrete data, Tetrad offers the following tests:
BDeu score, BIC score, conditional gaussian BIC score, and degenerate gaussian BIC score. For continuous data,
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Tetrad has CCI-score, extended BIC (EBIC) score, conditional gaussian BIC score and degenerate gaussian BIC score.
Finally, conditional gaussian BIC score and degenerate gaussian BIC score are available for mixed data.

A summary overview of these frameworks can be found in Table 3.

3.1.2 | Datasets

We present here a few3 key datasets used in causal discovery. These datasets originate in the context of classification or
regression problems.

The LUCAS (LUng CAncer Simple set) benchmark synthetic dataset is a binary dataset, proposed as a toy example
for the challenges created by the Causality Workbench project (Guyon et al., 2011) and is constituted by 12 binary vari-
ables, 2000 instances and represents 12 different causal relationships. This dataset represents several potential factors to
the development of lung cancer and other unrelated factors. Because of its design and consequently causal properties,
this dataset can be used to evaluate methods in terms of forecasting and terms of generated patterns. This dataset was
adopted in Ramanan and Natarajan (2020) to study how context-specific independencies can be used to learn causal
algorithms. A sample from this dataset is shown in Figure 4.

TABLE 3 Overview of software and methods for causal discovery in observational data

Software
Data Type of algorithm

Categorical

data

Continuous

Data

Mixed

Data

Time-

series

data

Causal

Sufficiency

Constraint-

based

Score-

based

Non-

Bayesian

bnlearn MMPC ✓ ✓ ✓ ✓ ✓

PC ✓ ✓ ✓ ✓ ✓

pcalg AGES ✓ ✓ ✓ ✓ ✓

FCI ✓ ✓ ✓ ✓

FCI-JCI ✓ ✓ ✓ ✓

Anytime FCI ✓ ✓ ✓ ✓

Adaptative Anytime FCI ✓ ✓ ✓ ✓

FCI+ ✓ ✓ ✓ ✓

GDS ✓ ✓ ✓ ✓ ✓

GES ✓ ✓ ✓ ✓ ✓

GIES ✓ ✓ ✓ ✓ ✓

LINGAM ✓ ✓ ✓ ✓

PC ✓ ✓ ✓ ✓ ✓

CPC ✓ ✓ ✓ ✓ ✓

PC Select (PC simple) ✓ ✓ ✓ ✓ ✓

RFCI ✓ ✓ ✓ ✓

Tetrad PC and PCStable ✓ ✓ ✓ ✓ ✓

CPC and CPCStable ✓ ✓ ✓ ✓ ✓

PcMax ✓ ✓ ✓ ✓ ✓

FGES/FGES-MB ✓ ✓ ✓ ✓ ✓

IMaGES ✓ ✓ ✓ ✓

FCI ✓ ✓ ✓ ✓

RFCI/RFCI-BSC ✓ ✓ ✓ ✓

GFCI ✓ ✓ ✓ ✓

MBFS ✓ ✓ ✓ ✓ ✓

GLASSO ✓ ✓ ✓ ✓

FOFC ✓ ✓ ✓ ✓ ✓

FTFC ✓ ✓ ✓

LiNGAM ✓ ✓ ✓ ✓
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The SIDO (SImple Drug Operation mechanisms) is a real-world binary dataset representing a set of molecule
descriptors tested against AIDS HIV and is constituted by 4932 variables and 12,678 instances. The authors did not
make available any representation of the causal relationships present in the data. This dataset is part of a set of
challenges proposed by the Causality Workbench project. The purpose of SIDO is to discover the causes for molecular
activity in the descriptors. This dataset was used by Yu et al. (2021) to study causal feature selection methodologies.

The Causal Protein-Signaling Networks in Human T Cells dataset, sometimes called the Sachs dataset
(Sachs, 2005), is a widely used dataset that represents proteins and phospholipids present in human immune sys-
tem cells and is constituted by 11 discrete variables ( 1,2,3f g), 5400 instances, and represents 17 different causal rela-
tionships. This dataset aims to discover potential connections between the molecules without the need for physical
intervention on them. For example, the comparative analysis of causal discovery algorithms in Singh et al. (2018) relies
on this dataset.

The breast cancer dataset is a well-known discrete data set that entails information about cancer patients. This
dataset is composed of 286 different instances and 9 variables, and its purpose is to diagnose the recurrence of breast
cancer (Figure 5). Regarding causal discovery, this data was used by Dhir and Lee (2020), prove the efficiency of the
algorithm proposed by them.

Finally, the asia dataset (Lauritzen & Spiegelhalter, 1988), is a widely used synthetic dataset that represents the rela-
tion between tuberculosis, lung cancer and bronchitis, and visitations to Asia (this dataset will be analyzed in more
detail in Section 3.1.4). This dataset was also used in the work of Ramanan and Natarajan (2020) to study how context-
specific independencies can be used to learn causal algorithms.
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FIGURE 4 LUCAS' dataset distribuition
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FIGURE 5 Breast cancer's dataset distribution
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More examples can be found in the R packages bnlearn4 and pcalg.5,6

3.1.3 | Evaluation metrics

Several metrics are used to evaluate causal discovery methodologies. These metrics are usually called pattern metrics as
they search for common patterns between the ground-truth model that explains the data (or from which the data was
generated) and the model generated by the method. Since generally, the ground truth model is represented in network
form (DAGs, for example), these metrics are also related to network metrics. Despite this restriction, some models gen-
erated by non-Bayesian methods can be transformed into networks as long as the generated model is a rule-like model

TABLE 4 Pattern metrics used for cross-sectional causal discovery methods

Metric Description

Missing edges Number of edges that are present in the original model but not in the generated one

Extra edges Number of edges that are present in the generated model but not in the original one

Incorrect adjacencies
(undirected edges)

Number of undirected edges that are present in the generated model but not in the original one

Correct directed edges Number directed edges present in the generated model that were correctly directed

Incorrect directed edges Number directed edges present in the generated model that were incorrectly directed

Structural hamming distance Sum of missing edges, extra edges, and incorrectly directed edges

Structural intervention
distance

For each pair X and Y checks whether the parents of X in the generated model are a valid adjustment
set (Pearl, 2009) in the true model. If it is, it is counted as a correct procedure. If it is not, it is counted
as a mistake.

Adjacency precision Adj Precision¼ Correctly predicted adjacenciesa

Predicted adjacenciesb

Adjacency recall AdjRecall¼ Correctly predicted adjacencies
True adjacenciesc

Arrowhead precision Arrhd Precision¼ Correctly predicted arrowheadsd

Predicted arrowheadse

Arrowhead recall Arrhd Recall¼ Correctly predicted arrowheads
True arrowheadsf

aNumber of undirected edges that are present in both the generated model and original one.
bAll the edges found in the predicted model.
cAll the edges found in the original model.
dNumber of directed edges that are present in both the generated model and original one.
eAll the directed edges found in the predicted model.
fAll the directed edges found in the original model.

TABLE 5 Distribution for dataset asia

Number of attributes 8

Number of Instances 5000

Attribute Yes No

A 99.16% 0.84%

S 50.30% 49.70%

T 99.12% 49.70%

L 93.40% 0.88%

B 50.98% 49.02%

E 92.60% 7.40%

X 88.62% 11.38%

D 47.00% 53.00%
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(such as association rule models) and given that all the generated relationships are simple (e.g., rules such as A,Bf g!
Cf g are not allowed). Table 4 reports a collection of pattern metrics (Raghu et al., 2018).

A

T

E

S

L

B

X D

(a) Network generated by pcalg’s,

bnlearn’s andTetrad’s PC

Metric PC

Missing Edges 3

Extra Edges 0

Incorrect Adjencies 0

Correct Directed Edges 2

Incorrect Directed Edges 3

SHD 6

SID 30

(b) Pattern metrics for pcalg’s,

bnlearn’s andTetrad’s PC

Metric PC

Adj Precision 100%

Adj Recall 62.50%

Arrhd Precision 40%

Arrhd Recall 25%

(c) Pattern metrics for pcalg’s,

bnlearn’s andTetrad’s PC

FIGURE 7 Comparison between the generated models and the true network for dataset asia. (a) Network generated by pcalg's,

bnlearn's, and Tetrad's PC. Represents the missing edges (� or!), edges incorrectly directed or extra edges (� or!), and edges

directed correctly (!). All three algorithms generated equivalent graphs and pattern metrics. (b) Represents the following metrics: Missing

edges, extra edges, incorrect adjacencies, correct directed edges, SHD, and SID. (c) Represents the following metrics: Adjacency precision

and recall, and arrowhead precision and recall

A

T

E

S

L

B

X D

FIGURE 6 Ground-truth graph for dataset asia
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Whenever a ground-truth model is not available, causal discovery methods can be evaluated regarding their perfor-
mance in classification or regression tasks. In these cases, the traditional classification performance metrics are adopted
(Hossin & Sulaiman, 2015).

3.1.4 | Running example

We elaborate an illustrative example to clarify the functionalities of libraries and the evaluation metrics. We restrict to
the PC algorithm as implemented by pcalg, bnlearn, and Tetrad. The dataset under analysis is asia,7 a discrete
synthetic dataset, consisting of eight binary variables, each one with values yes and no (Table 5). This dataset was gener-
ated from the graph of Figure 6, which represents all the relationships present in the data.

Beginning with pcalg, since asia is composed of binary variables, we will use the stable version of PC (PC-stable)
with the binary G2 test. The implementation of PC in bnlearn can reason on discrete, continuous, and mixed data by
changing the conditional independence test. For this example, we propose using mutual information as an indepen-
dence test (others can be applied). Finally, the PC implementation available in Tetrad is similar to the previous two
ones. For this example, we propose the usage of χ2 test as an independence test.

The graphs generated by these three frameworks are equivalent and can be seen in Figure 7a.
To understand the evaluation metrics, we compare Figure 7a with the ground-truth graph (Figure 6), highlighting:

missing edges, extra edges, incorrect adjacencies, correct directed edges, and incorrect directed edges. In all cases, there are
three missing edges (A!T, E!X , and E!D), and three incorrectly directed edges (S!L, S!B, and B!D). The
remaining edges in Figure 7a are correctly directed. Finally, there are no extra edges.

The structural hamming distance (SHD) is obtained by summing the missing edges, extra edges, and incorrectly
directed edges. The structural intervention distance (SID) reflects how a mistake in the generated graph can influence
the effects obtained. A summary of these metrics for the example at hand is shown in Table 7b. In addition, the derived
performance metrics associated with the patterns in the graphs (adjacency and arrowhead precision and recall) are also
shown. These metrics are a mixture of the more traditional prediction metrics, like precision or recall, but applied to
evaluate patterns in graphs.

The adjacency and arrowhead precision and recall are calculated as follows. The adjacency precision is obtained by
dividing the number of correctly predicted undirected edges (the number of edges with lines ! and � or ! in
Figure 7a) by the number of predicted edges (Correctly predicted edgesþextra edges): 5

5¼ 1¼ 100%. The adjacency
recall is obtained by dividing the number of correctly undirected edges by the number of true undirected edges (number
of edges in the original graph): 58¼ 0:625¼ 62:50%. The arrowhead or directed edges precision, is calculated by dividing
the number of correctly predicted directed edges (the number of edges with! in Figure 7a) by the number of predicted
directed edges (Correctly predicted directed edgesþextra directed edges): 2

5¼ 0:4¼ 40:00%. Finally, the arrowhead or
directed edges recall, is calculated by dividing the number of correctly predicted directed edges by the number of true
directed edges (number of directed edges in the original graph): 28¼ 0:25¼ 25:00%.

It is worth pointing that the implementations of pcalg, bnlearn, and Tetrad are equivalent. Choosing one
framework over the other depends on the user's requirements. For instance, if a user is not used to programming,
Tetrad is a natural choice, given its user-friendly interface. If the user needs a wide range of causal methods and the
possibility to use any conditional independence test (even the tests not available in the package), pcalg's is the best
choice. However, if the user only wants to apply the library methods in an easy and fast way, bnlearn is the best
choice.

3.2 | Time-series data

Time-series data include a sequence of observations about a single subject over multiple times.

Definition 12. (Time-series data) Observations about a single subject at multiple points or periods of time,
indexes in time order. We write Xt for the observation of random variable X at time t.

This type of data is characterized by the fact that they are being collected in adjacent time periods, and there may be
a correlation between distinct observations. Data collected on a continuous basis usually does not fall under the
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assumptions of conventional statistical methods, thus requiring different methods and tools. These types of data be uni-
variate (only one variable is measured) or multivariate (multiple variables are measured) and the variables can be con-
tinuous, discrete, binary, text, among other types, as seen in Table 6.

The search of causal relationships among variables in time-series data has seen an exponential increase in interest
in recent years, with sequential data collection becoming a common practice. Causal discovery from this type of data
can overcome the problems found in cross-sectional data. Furthermore, since there is a time component, we can
assume causal precedence: events in the present cannot cause events in the past. Thus, when faced with an identified
(undirected) dependence, it is safe to assume the relationship's direction as past! future.

Several methods are specifically designed to solve the task of finding causal relationships in sequential observational
data. One of the most known frameworks is the Granger causality, proposed by Granger (1969). Intuitively, X Granger-
causes Y if predicting Y based on past observations and the past observations of X performs better than predicted Y
based on its past only. Mathematically, this relationship can be formalized by testing that in the auto-regression:

Yt ¼
Xm
j¼1

ajY t�jþ
Xm
j¼1

bjXt�jþ εt

the coefficients bj's are statistically significant.
In this equation, m represents the model order or the maximum number of lags to be used, aj's and bj 's are the con-

tributions of the delayed observation of Y and X , respectively.
More recent approaches include TsFCI (Entner & Hoyer, 2010), which is an adaptation of FCI for time-series data.

This method uses sliding windows to transform the original time series into different subsets of consecutive timestamps,
disregarding the time component in each subset and treating them as cross-sectional. The method creates a model for
each subset of data using the models from previous timestamps as prior knowledge. Besides this, if a relationship disap-
pears from the model mt, this relation will be disregarded in the latter timestamps.

The PCMCI (Runge et al., 2019) is a causal graphical method designed to deal with linear and nonlinear time series.
This algorithm is divided into two phases, each one corresponding to a different conditional independence test: the PC1
and MCI phases. In the PC1 phase, the algorithm applies the conditional independence strategy implemented by PC
(skeleton phase) to uncover potential dependencies between each variable, in a specific timestamp, and all the other
variables, in all the previous timestamps, for example, Xt ⊥⊥Yt�1 jZ, Xt ⊥⊥Yt�2 jZ, and so on, where t is the specific
timestamp. Next, the method applies the MCI (momentary conditional independence) test (Runge et al., 2019) to
further determine causal relationships between variables in different timestamps while taking into account auto-
correlation and incorrect edge detections. PCMCI+ (Runge, 2020) is an extension of PCMCI, which admits the
existence of contemporaneous links (a causal relationship between variables in the same timestamp). Because of this,
PCMCI+ divides the skeleton search by type of relationships, namely lagged and contemporaneous relationships are
found separately. LPCMCI (Gerhardus & Runge, 2020) is yet another PCMCI extension specifically designed to deal
with latent variables. This method uses an FCI-like approach to represent the latent variables that are present in the
relationships.

Time-series data is a particular case of longitudinal data (Definition 13; McArdle & Nesselroade, 2014, Chapter 1).

Definition 13. (Longitudinal data) Observations about several subjects at multiple points or periods of time,
indexes in time order, and subject.

This type of data is characterized by the collection of information about the same individual at different points in
time. This means that, for each subject in a dataset, there is a set of time-series variables that characterize him. The var-
iables in longitudinal data can be continuous, discrete, binary, text, among other types, as seen in Table 7.

3.2.1 | Software tools

There are several libraries offered in different programming languages to solve the task of finding causal relationships
in time-series data.
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lmtest (Zeileis & Hothorn, 2002) is an R package known mainly by its implementation of the Granger causality, as
well as the standard dataset ChickEgg that is used as an example later in Section 3.2.2.

NlinTS (Hmamouche, 2020) is another R package. Similar to lmtest, this package implements a version of the
Granger causality. Besides this, NlinTS implements a nonlinear version of this test.

Tetrad, the tool presented in Section 3.1.1, has also implementations for several methods that deal with time-series
data, including TsFCI, FASK, and TsGFCI.

Tigramite (Runge, 2004–2021) is a Python framework for causal discovery in time-series data. This tool imple-
ments three different causal discovery methods (PCMCI, PCMCI+, and LPCMCI) and the following conditional inde-
pendence test (all these tests can be used together with the causal discovery methods): ParCorr (Yagoubi et al., 2018),
GPDC/GPDCtorch (Székely et al., 2007), CMIknn (Runge, 2018), and CMIsymb (Runge, 2018).

Unlike the previous data types, to the best of our knowledge, there is no tool available at the moment to deal specifi-
cally with longitudinal data. However, a few theoretical frameworks have been proposed for this type of data. One such
framework is the Causal Inference over Mixtures (CIM; Strobl, 2019). This method infers the causal structure by creat-
ing a mixture of DAGs, using the Global Markov Condition (Definition 5). Explicitly designed for longitudinal medical
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FIGURE 8 Distribution for one of the time-series in dataset FLAIRS

TABLE 9 Pattern metrics used in causal discovery from time-series data

Metric Description

Accuracy True PositiveþTrue Negative
True PositiveþFalse PositiveþFalse NegativeþTrue Negative

Mean/median error Measures the differences between the predicted and ground truth. In this category, we can have all the
variances of mean and median measures (root, squared, etc.)

Longest common
subsequence

Measures the size of the longest sequence of events in a time-series model

Edit distance with real
penalty

Measure the number of changes to transform one series into another, with a user-defined penalty

Euclidean distance Measures the distance between each step of the series dE x
!
, y
!� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
!� y

!� �
x
!� y

!� �0r
Dynamic time warping Measures the distance between two sequences. Being a sequence of a set of time points, the distance between

each point is measured using the euclidean distance
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data, it allows for cycles. Besides this, it applies the skeleton phase of (Colombo & Maathuis, 2014). The orientation
phase proposed by the authors is similar to FCI.

An overview of these libraries can be found in Table 8.

3.2.2 | Datasets

Compared to the case of cross-sectional data, there is a smaller range of benchmark datasets for time-series data8 for
times-series causal discovery algorithms is smaller.

The FLAIRS 2015 (Huang & Kleinberg, 2015) dataset is synthetically generated. It comprises 22 different subsets,
each with a different causal structure, with lags between 1 and 3, 20 continuous variables, and 1000 time-points each.
The causal structures simulated in this dataset are common cause, common cause, and common effect, and random
relationships. A sample from this dataset is shown in Figure 8 and Table 8.

CODE 1 Egg cause chicken? or chicken cause eggs?

TABLE 10 Dataset ChickEgg

(a) Dataset excerpt Chicken Egg

1930 468,491 3581

1931 449,743 3532

1932 436,815 3327

… … …

1983 364,584 5656

(b) Dataset information
Number of attributes 2

Number of Instances 54

Mean ± SD Chicken 419,504 ± 46,406.94

Egg 4986.46 ± 884.97
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The FinanceCPT (Kleinberg, 2012) is a simulated dataset composed of 25 portfolios (variables) with 10 causal struc-
tures each and 4000 day time periods. The structures simulated in this dataset are no dependency between portfolios,
20 random relationships with a lag one, 40 random relationships with a lag one, 20 random relationships with random
lags 1–3, 40 random relationships with random lags 1–3, and many-to-one relationships at a lag of one.

The PROMO dataset is a time-series simulated dataset composed of a daily measurement of 1000 promotion vari-
ables and 100 product sales for 3 consecutive years. Its purpose is to identify which promotions affect sales. This dataset
is part of a challenge proposed by the Causality Workbench project (Guyon et al., 2011).

The ChickEgg (Thurman & Fisher, 1988) is a time-series dataset with information collected annually about the num-
ber of chickens and eggs between 1930 and 1983. It consists of two variables (number of chickens and eggs per year)
and three lags (this dataset will be analyzed in more detail in Section 3.2.4).

Regarding longitudinal datasets available for causal discovery, there are very few examples. Moreover, it is challeng-
ing to find ground-truth data to evaluate approaches because this area is relatively unexplored. One dataset is the
National Footprint Accounts 2018, which collects data from the Ecological Footprint and biocapacity of countries across
the world in over 50 years. The objective of this dataset is to understand the cause of the produced footprint values.
A sample from this dataset is shown in Table 7.

3.2.3 | Evaluation metrics

The pattern metrics presented in Section 3.1.3 can be applied to time-series methods as well if there is a ground-truth
model that represents the causal relationships present in the data. Table 9 shows a set of performance metrics specific
to time-series data (Moraffah et al., 2021), to be used when this information is not available.

chicken:3

chicken:2

chicken:1

chicken

egg:3

egg:2

egg

egg:1

(a) TsFCI (a) PCMCI

FIGURE 9 Networks generated by tsFCI and PCMCI for dataset ChickEgg

TABLE 11 Performance metrics for dataset ChickEgg

tsFCI PCMCI

Mean squared error 19,009.5 17,491.32

Longest common subsequence 3 5

Edit distance with real penalty 1588.65 1563

Euclidean distance 515.88 494.85

Dynamic time warping 1001.87 736.42

NOGUEIRA ET AL. 21 of 39

 19424795, 2022, 2, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1449, W
iley O

nline L
ibrary on [11/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The accuracy is a metric used to evaluate classification models and can be defined as the fraction of correct predic-
tions made by the model.

The mean and median errors are metrics that encapsulate the fraction of times the model got some response wrong.
This error can be calculated in several ways, being the simplest one 1�accuracy.

The euclidean distance (Iglesias & Kastner, 2013) is another symmetric metric that calculates the distance between
two-time series x

!
and y

!
(the predicted and the ground-truth). This metric is usually used for regression problems.

The longest common subsequence (Bagnall et al., 2016) is an asymmetric metric that measures the number of correct
predictions in sequence and reports the highest number. This metric is usually used in regression problems since it uses
the euclidean distance to calculate the difference between the predictions and the ground truth. This is performed by
reducing the difference to 0 or 1 depending on the distance. If the Euclidean distance between two values is smaller
than a defined threshold, they are considered equal. Hence, the distance is 0. On the other hand, if the difference is
higher than the threshold, then the distance is 1.

The Edit Distance with real penalty (Chen & Ng, 2004) is another distance metric that reports the number of edits
that are needed to transform the series of predictions into the ground truth.

Finally, the Dynamic Time Warping (Berndt & Clifford, 1994) is a distance metric that calculates the difference
between two-time series, taking into account the potential differences in measurement in the timestamps (e.g., different
frequencies). This is done by comparing each timestamp t from one of the time series with tþ1, tþ2, and so on, from
the second time series.

With regard to metrics for evaluating causal methods for longitudinal data, there are two options. First, the evalua-
tion metrics presented in Section 3.1.3 can be applied if there is a ground-truth structure to compare with. Second, since
time-series data is a particular type of longitudinal data, the evaluation metrics presented in this section can also be
applied.

3.2.4 | Running example

We elaborate an illustrative example to understand the libraries and evaluation metrics for time-series data. In this
example, we consider the following methods: lmtest's Granger Causality, Tetrad's tsFCI, and Tigramite's
PCMCI. The dataset under analysis is ChickEgg9 (Table 10). There is no ground-truth graph, but it is well-known that
from the dataset, it can be proven that eggs came before chickens (Egg!Chicken). To apply the evaluation metrics
presented in Section 3.2.3, data is split into a training set (70%) and testing set (30%).

Beginning with lmtest, the Granger causality method needs no particular parameter insertion besides stating the
number of lags. To be able to understand if Eggs cause Chicken or the other way around, it is necessary to apply the test
in both cases: Eggs cause Chicken and Chicken cause Eggs). The output of the tests, reported in Code 1, shows that Eggs
cause Chicken has a significant p-value (0.002996), while the other test has not. The Granger causality test is not a typi-
cal causal discovery method that creates a model that entails all the relationships in the data. Instead, to uncover rela-
tionships, it is necessary to test every combination of variables to find every relationship. Besides, this method reports
only how the variables are related as a whole and not by lags (unlike the methods presented further in this section).
Hence, it is impossible to compare it with the remaining ones further.

Another potential method to undercover causal relationships in time series data is Tetrad's tsFCI. In this
method, it is possible to accommodate discrete, continuous, and mixed data. For the ChickEgg example, we use the
Fisher's Z test as an independence test. The generated graph can be seen in Figure 9a.

Finally, PCMCI from Tigramite can also be used. This algorithm is also accommodates discrete and continuous
data. For the ChickEgg example, we use the ParCorr test as an independence test. The generated graph is shown in
Figure 9b.

Table 11 presents the evaluation metrics from Section 3.2.3. These metrics are calculated over the test set by compar-
ing the original and predicted values of the target variable. The metrics Edit Distance with Real Penalty, Euclidean Dis-
tance, and Dynamic Time Warping are all distances, meaning that the lower the value, the better the performance
is. The same applies to the Mean Squared Error. The Longest Common SubSequence represents the size of the largest
sequence of values present in both the target's true values and predicted values. For this reason, the higher it is value is,
the better performance the model achieves.
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From Figure 9b, we can notice that PCMCI successfully finds relationships between the egg variable at time t and
the chicken variable at time tþ1. This is also reflected in the results from Table 11, where the PCMCI performance is
better than those of the tsFCI.

It is worth noting that these metrics are not specific for causal discovery. Instead, they evaluate any classification or
regression model. Since, first and foremost, a causal discovery model is a classification or regression model (depending
on that used), it can be evaluated with such metrics.

4 | CAUSAL INFERENCE

Causal inference aims at estimating the causal effect of a specific variable (treatment) over a certain outcome of interest.
Depending on the context of analysis, the causal effects can be quantified by different metrics, each focusing on differ-
ent granularity levels. While we adhere here to the PO model, the same metrics can be re-stated in the context of the
SCM framework (Aliprantis, 2015). In this section, we first present a number of causal effects of interest. Then, we dis-
cuss methods to estimate such causal effects starting from observational data, distinguishing whether or not they make
the unconfoundedness assumption. Next, we cover software tools, datasets, and present a running example.

4.1 | Causal effects

At the highest granularity level, for each unit in the PO model, the Individual Treatment Effect models the effect of
treatment on the unit.

Definition 14. (ITE) The Individual Treatment Effect of unit i is: ITEi¼Y 1,i�Y 0,i.

Despite recent efforts (Shalit et al., 2017; Yao et al., 2018), the estimation of ITE is challenging, as only the observed
potential outcome is available in the data. At the population level, the Average Treatment Effect is the expectation of
the ITEs. See Caron et al. (2020) for a review on ITE.

Definition 15. (ATE) The Average Treatment Effect is: ATE¼ Y 1�Y 0½ �.

The same definition can also be stated under the SCM framework. Assuming a binary treatment variable T, the
Average Treatment Effect is equivalent to  Y jdo T¼ 1ð Þ½ �� Y jdo T¼ 0ð Þ½ �.

In some contexts, the effect of interest can be restricted on the treated units, called Average Treatment Effect on
Treated.

Definition 16. (ATT) The Average Treatment Effect on Treated is: ATT¼ Y 1�Y 0jT¼ 1½ �.

The ATE might fail to capture causal effects due to the presence of heterogeneity among the units. This is overcome
by the Conditional Average Treatment Effect.

Definition 17. (CATE) Given a subset of covariates X , the Conditional Average Treatment Effect for X ¼ x
is: CATE xð Þ¼ Y 1�Y 0jX ¼ x½ �.

Notice that CATE boils down to ATE when X is the empty set.
The objective of causal inference is to estimate causal effects starting from observational data, where only factual

outcomes are available.
Based on the type of available data and assumptions, we distinguish three main settings: experiments, observational

data with unconfoundedness, and observational data with no unconfoundedness.
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4.1.1 | Experimental data

In experimental settings, the treatment variable T is under the control of the researchers. Units are assigned either to a
treatment group or to a control group. For instance, patients can either receive or not the drug.

The experiment is defined as a Randomized Controlled Trial (RCT) whenever the treatment assignment is per-
formed randomly. This is the gold standard for estimating causal effects in social sciences and clinical trials. Randomi-
zation ensures that potential outcomes are independent of the treatment, that is, Y 0,Y 1f g⊥⊥ T. This implies
 Yt½ � ¼ YtjT¼ t½ � and then:

ATE¼ Y 1�Yo½ � ¼ Y 1jT¼ 1½ �� Y 0jT¼ 0½ � ¼ Y jT¼ 1½ �� Y jT¼ 0½ � ð2Þ

A further assumption is, however, needed to estimate causal effects. In the stable unit treatment value assumption
(SUTVA), the observed outcome of a unit does not depend on the treatment assigned to other units (Cox, 1958), that is,
Yi¼YTi,i. From (2), the ATE can then be estimated starting from a sample of observed units as follows:

dATERCT¼ 1
n1

X
i:Ti¼1

Yi� 1
n0

X
i:Ti¼0

Yi

where nt is the number of units i in the sample with Ti¼ t. An equivalent approach is given by running a simple OLS
regression of Yi given Ti. See Angrist and Pischke (2008, Chapter 2) for a comprehensive approach.

4.1.2 | Observational data with unconfoundedness

While RCTs are the gold standard for retrieving causal effects, they might be costly, unethical, or even impossible to
run. In an observational setting, a number of assumptions is required to assess the causal effects directly from an
i.i.d. sample of observations. The first one requires the independence of the potential outcomes from the treatment, not
in general, but for a given a set of covariates.

Definition 18. (Unconfoundedness) Unconfoundedness w.r.t. a set of covariates X holds if: Y 0,Y 1f g⊥⊥ T jX .

Unconfoundedness is also referred to as ignorability, conditional independence (Lechner, 1999), or selection on
observables (Barnow et al., 1980). Under the SCM framework, this can be assimilated to the backdoor criterion
(Pearl, 2009). In the kidney stones example, if we know that people having larger kidney stones are more likely to
receive the treatment compared to patients with smaller ones, then we can divide the population into smaller subgroups
depending on the size of the kidney stones, and analyze each stratum as if the treatment is randomly assigned. The

Z

T Y

U

T M Y

U

(a) (b)

FIGURE 10 Valid examples for instrumental variables and Frontdoor criterion
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additional assumption of the overlap condition (or positivity) requires non-deterministic treatment assignment, namely
0<P T¼ 1jX¼ xð Þ<1. Unconfoundedness and overlap conditions together are known as strong ignorability. Assuming
ignorability, an estimate of the ATE consists of averaging the estimates of CATEs over each stratum—a strategy known
as stratification or blocking:

ATE¼
X
x

 Y jT¼ 1,X¼ x½ �� Y jT¼ 0,X¼ x½ �ð Þ

In the literature,  Y jT¼ 1,X¼ x½ �, Y jT¼ 0,X¼ x½ � are also referred to as conditional-response surfaces.
Such an approach has some issues in the case of continuous covariates or covariates with many values. An alterna-

tive relies on propensity scores (Rosenbaum & Rubin, 1983). Complete overviews of propensity scores methods for
retrieving causal effects can be found in (Austin, 2011; Imbens, 2004; Imbens & Rubin, 2015).

Definition 19. (Propensity score) For a set of covariates X , the propensity score is the conditional probability
of getting treated: e xð Þ¼P T¼ 1jX ¼ xð Þ.

The estimation of propensity scores requires two key decisions: the model or functional form of e �ð Þ and the
covariates in X. For binary treatments, the logistic regression model is commonly adopted (Caliendo & Kopeinig, 2008).
Propensity scores are balancing scores, namely Y 0,Y 1f g⊥⊥ X j e Xð Þ. Under the assumption of unconfoundedness, this
implies that Y 0,Y 1f g⊥⊥ T j e Xð Þ (Imbens & Rubin, 2015). Therefore, strata can be considered w.r.t. the propensity score,
rather than on the covariates. This helps solve dimensionality concerns.

Another common usage of propensity score is matching (Abadie & Imbens, 2016) treated units with untreated units
based on their similarity w.r.t. a distance measure either on the covariate space, or directly on the propensity score
space (Yao et al., 2021). The idea is to pair individuals with different exposure to treatment, but similar in terms of the
propensity score. Matching can be one to one, where each treated (resp., untreated) unit is paired with the closest
untreated (resp., treated) unit, to one to many methods, where each unit can have multiple matches. By denoting with
J ið Þ the set of matched units for unit i, the ATE can be estimated from a sample of N units as:

dATEMCT¼ 1
N

XN
i¼1

bYi 1ð Þ� bYi 0ð Þ
� �

where bYi tð Þ¼Yi if Ti¼ t, and bYi tð Þ¼ 1
M

P
j � J ið ÞYj if Ti¼ 1� t, where M¼jJ ið Þ j.

Propensity score is also used to re-weight observational data (Hirano et al., 2003; Robins et al., 2000; Rosenbaum &
Rubin, 1983) in such a way that the distribution of covariates is uniform across treatments, namely
w x,1ð Þ �P X¼ xjT¼ 1ð Þ¼w x,0ð Þ �P X¼ xjT¼ 0ð Þ. In the Inverse Probability of Treatment Weighting (IPTW; or Inverse
Propensity Weighting [IPW]), the following weight definition achieves that:

w x, tð Þ¼ t
P T¼ tjX¼ xð Þþ

1� t
1�P T¼ 1� tjX¼ xð Þ¼

t
e xð Þþ

1� t
1� e xð Þ :

Reweighting rebalances data to a sort of experimental data. As long as unconfoundedness and the overlap condition
hold, the causal effects can be estimated as in the RCT scenario (but now for a weighted sample).

Some concerns regarding the variance of the estimators arise when units have propensity score values close either
to 1 or 0. A popular solution is to stabilize the weights (Robins et al., 2000). Another methodology used for retrieving
causal effects in this context is the G-formula (Robins, 1986). Both G-formula and IPW fall under the marginal struc-
tural models family (Petersen et al., 2006). For a comparison of marginal structural models techniques, see Chatton
et al. (2020).

Since under unconfoundedness ATE can be characterized in terms of propensity scores and CATE, a natural ques-
tion that arises is whether combining both approaches can have some benefits. This concern is addressed in (Robins
et al., 1994), where Augmented Inverse Propensity Weighting (AIPW) is proposed. The AIPW estimator is defined as:
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dATEAIPW¼ 1
n

Xn
i¼1

μ1 xið Þ�μ0 xið ÞþTi � Yi�μ1 xið Þ
e xið Þ � 1�Tið Þ � Yi�μ0 xið Þ

1� e xið Þ
	 


where the conditional-response surface μt xð Þ¼ Y jX¼ x,T¼ t½ � and the propensity score e xð Þ are estimated using
regression models. The above estimator is also known as a doubly robust estimator, as it requires that only one of either
the propensity score estimate or the response surface estimate is consistent to make the estimator consistent for the
ATE (Scharfstein et al., 1999). Moreover, AIPW estimator is optimal among the non-parametric estimators, in the sense
that it attains the Cramer–Rao bound (Hahn, 1998). See Glynn and Quinn (2010) for an overview of AIPW.

Another robust alternative is the Targeted Maximum Likelihood estimator method (Van Der Laan & Rubin, 2006),
which involves four steps. In the first step, an estimation of the conditional expectation of outcomes given treatment
and covariates  Y jT,X½ � is performed. In the second step, propensity scores are estimated. The third step adjusts the
estimated conditional expectations using the estimated propensity scores. In the last step, the updated estimate of
 Y jT,X½ � is used to generate pairs of potential outcomes and, for each unit, the difference between pairs of potential
outcomes. The average of these differences is then an estimate of the ATE.

The methods presented assume homogeneous effects of treatment, which may not be the case in some contexts. Let
us go back to the kidney stones example. In a (plausible) scenario where younger patients are more reactive to the treat-
ment, the effectiveness of the drug will vastly change depending on the age of the patient. This is a case of heteroge-
neous effects. Here, the causal measure to focus on is the CATE. A semi-parametric approach for estimating CATE can
be developed based on linearity assumptions [Chernozhukov et al., 2018; see Nie and Wager (2021) for a generalization
to a nonlinear setting].

Another popular nonparametric approach is Bayesian Additive Regression Trees (BART; Hill, 2011), where the con-
ditional expectation of the outcome given treatment and covariates is estimated by an ensemble (a sum) of decision
trees, that is,  YijXi¼ x,Ti¼ t½ � ¼ f x, tð Þ¼PQ

q¼1gq x, tð Þ with gq x, tð Þ denoting a Bayesian decision tree. Therefore, the
CATE τ xð Þ can be defined as f x,1ð Þ� f x,0ð Þ. In a similar fashion, other ensembles of trees and random forests have
been investigated recently (Athey & Imbens, 2016; Athey & Wager, 2019; Wager & Athey, 2018). For a comprehensive
review of these approaches, see Yao et al. (2021).

4.1.3 | Observational data without unconfoundedness

A practical problem for achieving unconfoundedness is to identify and collect all relevant covariates that make treat-
ment assignments independent of the potential outcomes. A similar issue occurs for satisfying the overlap condition.
Let us consider here approaches that do not assume unconfoundedness.

Instrumental variables (IV), first introduced by Wright (1928) and named by Reiersø (1945), were developed
in the structural econometrics setting and were used to address endogeneity issues. For simplicity, assume
no covariate X, and consider a linear structural model Y ¼ αþβ �Tþ ε of the outcome Y given the treatments T, with
α¼ Y 0½ � and ε¼Y 0� Y 0jT½ �. Given this specification, unconfoundedness (Yt ⊥⊥ T) implies that
 εjT½ � ¼ Y � Y jT½ �jT½ � ¼ Y jT½ �� Y jT½ � ¼ 0. In such a setting an OLS regression can consistently estimate the
parameter β. Conversely, if unconfoundedness does not hold, it might be  εjT½ �≠ 0, hence the estimation of the causal
effect β through OLS regression is not consistent.

Other estimators to retrieve β when multiple instruments are available are the Two Stage Least Squares (2SLS;
Theil, 1961) and the Method of Moments (Baum et al., 2003). In summary, the following conditions are required for
using the IV approach: exogeneity condition: Z ⊥⊥ ε; exclusion restriction: the instrumental variable Z affects the out-
come Y only through T; relevance condition: Cov Z,Tð Þ≠ 0. The exclusion restriction can be easily understood through
a graphical example, where no arrows pointing to Y are coming directly from Z, as shown in Figure 10a.

Modeling the treatment effect as a linear model can be considered a strong assumption. However, as shown by 2021
Nobel's price laureates in (Angrist et al., 1996; Imbens & Angrist, 1994), the IV strategy can also be used in the potential
outcome framework where units might not comply with the designation of the treatment. Let us think, for example, of
an experiment where the patients are randomly assigned to take a certain drug, but not all of them actually follow the
assignment. In such a scenario, we can denote the outcome as Yi, the treatment received as Ti (non-random) and the
treatment to which each unit was assigned as Zi (random). In this setting, we can frame the actual treatment Ti as a
potential outcome of the assignment Zi, that is, there are T0,i and T1,i. Moreover, the outcome is now a potential
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outcome of both Ti and Zi and it can be defined (with a slight abuse of notation) as Yt,zf gt,z � 0,1f g. At this point, the
three conditions of instrumental variables are met: exogeneity is ensured by the randomness of Z, the exclusion restric-
tion holds as Z affects the outcome only through the actual assignment and, finally, the treatment assignment influ-
ences the actual taking of the drug, fulfilling the relevance condition. By looking at the actual treatment and the
treatment assignment, we can identify four sub-populations in our sample: the compliers, who are those who follow
the treatment designation, the always-takers, who are those that always receive the treatment no matter what is the
assignment, the never-takers, who are those that never receive the treatment no matter what is the assignment, and the
defiers, who are those that do the opposite of what they were assigned to. By adding the additional assumption of no

defiers, the IV estimator ^LATE¼  YijZi¼1½ �� YijZi¼0½ �
 TijZi¼1½ �� TijZi¼0½ � identifies the treatment effect for those who comply with the assign-

ment. Such an effect is also known as Local Average Treatment Effect (LATE). See Imbens (2014) for an overview of
other instrumental variables approaches.

Another popular technique dealing with the lack of unconfoundedness is the front door criterion (Pearl, 1995)
under the SCM framework. As depicted in Figure 10b, a few requirements need to be met in order to exploit it in the
estimation of causal effects. In particular, M must block all the directed paths from T to Y , T has no unblocked back-
door paths to M and T blocks all the paths from Y to M. As a fact, M can be defined as a mediator variable. By estimat-
ing the effect of T on M and then of M on Y , it is possible to retrieve the effect of T on Y .

Another option arises whenever the treatment assignment depends only on the values of a specific variable. For
instance, consider in the kidney stones example, that patients are assigned to treatment only if the size of their kidney
stones is bigger than a certain threshold. The Regression Discontinuity Design (RDD; Thistlethwaite & Campbell, 1960)
precisely assumes that the treatment depends on a variable C, called the running variable, and a threshold c0 as, for
unit i: Ti¼ 1Ci > c0 . The core idea of this methodology is that observations close to the threshold are in principle pretty
similar to each other, and they can be used to retrieve the causal effect of the treatment. In particular, two assumptions
are made: (i) the probability of receiving the treatment jumps at the cutoff c0:

lim
c!c�0

P T¼ 1jC¼ cð Þ¼ x�≠ lim
c!cþ0

P T¼ 1jC¼ cð Þ¼ xþ;

and, (ii) the potential outcomes are continuous at the cutoff, namely there exist:

lim
C!c0

 Y 0jC¼ c½ �, lim
C!c0

 Y 1jC¼ c½ �:

man

treat

weight

overweight

white

N_T

N_Y

FIGURE 11 DAG for the running example on causal inference
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Under such assumptions, the ATE can be calculated as:

ATERD¼ Y 1�Y 0jC¼ c½ � ¼ lim
C!cþ0

 Y jC¼ c½ �� lim
C!c�0

 Y jC¼ c½ �:

ATERD can be estimated by either parametric or nonparametric approaches (Cattaneo et al., 2020, 2021; Lee &
Lemieux, 2010).

In the case of longitudinal data, namely for each unit there are multiple observations over time, some further
approaches are available. Let us consider a setting where the observed outcome Yi,l and a binary treatment Ti,l are mea-
sured over time l¼ 1,…,L for each unit i¼ 1,…,N in a sample. Let us also suppose that the two variables are linearly
related as: Yi,l¼Yi,l 0ð ÞþTi,l � τ, where Yi,l 0ð Þ refers to the potential outcome under no treatment at time l and τ can be
seen as the constant causal effect of treatment Ti. Assuming that the effect is not heterogeneous, that is, the treatment
affects the units in the same manner in all the periods, and that there are no treatment dynamics, that is, the outcome
at time l depends only on the treatment at the same time, a causal estimate can be modeled as:

Yi,l¼ αiþβlþTi,l � τþ εi,l  εjα,β,T½ � ¼ 0:

This two-way model assumes that there are two fixed effects, one for each unit and one for each period. In the simplest
possible scenario, that is, when there are just two periods (L¼ 2), some units never get treated, and the remaining are
treated just in the second period, the OLS estimator coincides with

dATEDID¼ 1
j i :Ti,2¼ 1f g j

X
i:Ti,2¼1

Yi,2�Yi,1ð Þ� 1
j i :Ti,2¼ 0f g j

X
i:Ti,2¼0

Yi,2�Yi,1ð Þ

dATEDID is what is referred to as a difference-in-differences (DID) estimator of the ATE. A seminal example of this tech-
nique can be found in Card and Krueger (1994), where the authors studied the effect of a rise in the minimum wage on
unemployment. This was done by comparing New Jersey workers, where a minimum wage raise was introduced, with
Pennsylvania workers, where no raise occurred. A crucial assumption of the difference-in-differences approach is the
parallel trend, that is, although treatment and comparison groups may have different levels of the outcome prior to the
start of treatment, their trends in the outcomes before the treatment should be the same. Moreover, as pointed out in
Bertrand et al. (2004), extra care should be devoted when handling the error terms εi,l. For a comprehensive review of
DID estimators, see Lechner (2011). In order to overcome the assumption of a fixed αi over time, some approaches have
been developed, such as the synthetic control methods, first introduced in Abadie and Gardeazabal (2003) and later
developed in Abadie et al. (2010). The core idea of synthetic methods is to re-weight the units that were not treated so
that the parallel trend assumption becomes more plausible. A more recent advancement in this direction is the syn-
thetic difference-in-differences method, presented in Arkhangelsky et al. (2019), which also provides a unified perspec-
tive of DID and synthetic control methods.

TABLE 13 Mean and standard deviation of estimated ATEs over 1000 simulation runs

Estimates

Ground truth
coefficient

OLS
regression

Exact
matching

Full
matching

Stabilized
IPW

Doubly
robust
AIPW

High impact scenario �30 �29.99 ± 0.766 �29.99 ± 0.822 �30.05 ± 6.92 �30.15 ± 0.839 �30.16 ± 0.841

Low impact scenario �10 �9.993 ± 0.75 �9.989 ± 0.791 �9.79 ± 7.05 �10.14 ± 0.809 �10.159 ± 0.812

No impact scenario 0 �0.014 ± 0.736 �0.032 ± 0.776 0.265 ± 6.801 �0.183 ± 0.789 �0.201 ± 0.792
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4.2 | Software tools

Many software tools for estimating causal effects have been developed in the recent years. We review a non-exhaustive
list (Table 12), discussing which approaches they implement and their most relevant features.

DoWhy (Sharma et al., 2019) is one of the most complete tools. Written in Python, it provides a unifying framework
for several methodologies, covering virtually the whole process of causal inference. DoWhy covers four tasks: model the
causal problem through a causal graph, identify the causal estimand of interest, estimate the causal effect and validate
the obtained results. The following identification strategies are currently implemented: backdoor criterion, front-door
criterion, instrumental variables, and mediation analysis. For each of these, a few methods for estimating causal effects
are provided. Moreover, DoWhy natively connects to the wide range of machine-learning-based estimators from
EconML (Microsoft Research, 2019).

Propensity score matching is implemented in the following three tools. The popular R package Matching
(Sekhon, 2011) offers three main functions: Match, MatchBalance, and GenMatch. The first one performs propen-
sity score matching. The second one checks whether the matching method balances the data. The last function gener-
ates optimal weights for each covariate through a genetic search algorithm to automatically balance the data. MatchIt
(Ho et al., 2011) is another popular choice. The package offers the function matchit, which generates matched data
through different methods. After the matching is performed, standard regression techniques can be applied to the
obtained data to retrieve the causal effects of interest. Another interesting option for large datasets with discrete
covariates is the R package R-FLAME (Orlandi et al., 2020) and its Python version dame-flame. The packages provide a
framework that implements the Fast, Large-Scale Almost Matching Exactly (FLAME; Wang et al., 2021) and Dynamic
Almost Matching Exactly (DAME; Dieng et al., 2019) approaches.

Propensity score weighting is implemented in the following other four tools. PSW (Mao & Li, 2018), one of the main
reference libraries, provides several techniques based on propensity score through the function psw. This package
allows to check visually the propensity score distribution in both treatment groups, evaluate the covariates balance, and
test the specification of the propensity score model. CBPS (Fong et al., 2021), available in R, implements several
methods presented in Imai and Ratkovic (2013), both for cross-sectional data and longitudinal ones. CBPS maximizes
at the same time covariate balance and the prediction of treatment assignment, while typically propensity score algo-
rithms predict the treatment assignment and then perform a check on the covariates to see whether they are balanced
among different treatment groups. This makes the method more robust to misspecifications. CBPS includes matching,
weighting, and double-robust methods based on the estimated propensity scores. The package ipw (van der Wal &
Geskus, 2011) implements the inverse probability of treatment weighting, both for time-fixed and time-varying frame-
works. Similarly, PSweight (Zhou et al., 2021) covers propensity-score based estimators through Propensity Score
weights, exact-matching weights, entropy weights, ATT weights, and overlap weights.

RISCA (Foucher et al., 2020) is a viable option for users interested in marginal structural models, as it provides
functions for G-estimation and Inverse Probability Weighting.

Doubly robust estimators are offered also by CausalGAM (Glynn & Quinn, 2017), an R library that implements both
standard estimators and the AIPW estimator, or by the tmle (Gruber & van der Laan, 2012) package, which provides
an R implementation of the Targeted Maximum Likelihood Estimators.

Several tools rely on machine learning for estimating causal effects. BART (Sparapani et al., 2021) provides a pack-
age for the estimation of Bayesian Additive Regression Trees. grf (Tibshirani et al., 2020) is an R package that imple-
ments tree-based methodologies (Athey et al., 2019) for CATE estimation. The main function is causal_forest,
which trains a causal forest to retrieve heterogeneous treatment effects. For Python, we refer to EconML and Causal

ML packages. The former provides several implementations of state-of-the-art methodologies for retrieving heteroge-
neous causal effects, such as Double Machine Learning (Chernozhukov et al., 2018), causal trees/forests (Athey &
Imbens, 2016; Wager & Athey, 2018), Doubly Robust Learning (Foster & Syrgkanis, 2020), and Meta-Learners (Künzel
et al., 2019). The latter (Chen et al., 2020) covers similar approaches, yet less extensively. Further Python packages are
available to estimate ITE, such as CEVAE (Shalit et al., 2017), and SITE (Yao et al., 2018), which follow the work of
(Yao et al., 2018).

Instrumental variables estimation is offered by the R package ivreg (Fox et al., 2021). The function ivreg fits differ-
ent estimators, including the Two-Stage Least Squares (2SLS) and the Method of Moments (MM).

rdrobust (Calonico et al., 2021) is one of the main tools offering an RDD implementation. It covers all the
required steps through different functions: rdplot deals with the graphical exploration of the setting, rdbwselect
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picks the optimal bandwidth, and rdrobust computes the RDD estimator under different assumptions. Other packages
for RDD estimation include (Stigler & Quast, 2016; Dimmery, 2016).

A canonical implementation of difference in differences can be obtained by simply instantiating a common panel
linear regression [plm (Croissant & Millo, 2008) for R users, linearmodels (Sheppard et al., 2021) for Python
researchers]. More advanced techniques, such as synthetic control, can be implemented through the Sytnth (Abadie
et al., 2011) package and CausalImpact (Brodersen et al., 2014). The latter is available both in R and in Python.

4.3 | Datasets

We present a few open-access datasets widely used in papers about causal inference.
IHDP is based on the RCT developed by the Infant Health and Development Program (Brooks-Gunn et al., 1992).

There are 25 covariates about infants and their mothers. The treatment regards the access to comprehensive early inter-
vention. The goal of the study was to understand how this extra care could help reduce the developmental and health
problems of low birth weight for premature infants.

Lalonde is a well-known observational dataset used to evaluate propensity score matching in (Dehejia &
Wahba, 1999). The variables refer to workers' characteristics, such as age, education, ethnicity, marital status, exposure
to the training program (the treatment), and salary.

Several datasets can be obtained from the Wooldridge package in R. This library includes all the 114 datasets of
Wooldridge (2015). For instance, the mathpnl dataset (Papke, 2005) regards student performances at schools.

Some data can be obtained exploiting the popular RDD packages previously described. In particular, the house
dataset from Lee (2008) and also used in Imbens and Kalyanaraman (2012), is included in the rddtools library. The
dataset refers to observations for elections, and it was used to estimate the effect of being the incumbent, exploiting the
percentage of votes as a running variable.

The Card–Krueger 1994 dataset is a notorious example for DID estimation from (Card & Krueger, 1994; see also the
version from Ropponen (2011)). It contains data about workers in the fast-food industry.

Finally, additional datasets from the econometrics domain are included in the R-package AER (Kleiber &
Zeileis, 2008). These datasets can be used to estimate several causal inference techniques. For instance, the Ciga-
rettes dataset is suited for instrumental variable approaches.

4.4 | Running example

A toy example is provided here to compare the performance of several methodologies under the unconfoundedness
assumption. In such an example, we are going to generate data that simulate patients that undergo a diet. The code
used for the whole experiment can be found through the link here 1. The structure of the data is illustrated in
Figure 11.

For each instance, seven variables are simulated. The binary variable man is equal to one if the patient is a man,
and it is generated through a Bernoulli 0:5ð Þ. The binary variable white is equal to one if the patient is white, and it is
distributed as a Bernoulli 0:65ð Þ. The binary variable overweight is equal to one if the unit was overweight in the past,
and it follows a Bernoulli 0:32ð Þ if white is equal to one, otherwise, it follows a Bernoulli 0:4ð Þ. The variables NT and NY

are noise variables distributed as Normal 4,2ð Þ and Normal 15,1ð Þ respectively. The binary variable treat refers
to whether the unit has been on a diet and it is defined as follows: if NTþwhiteþ3�overweight�manð Þ>6, it
is equal to one, otherwise it is equal to zero. Finally, the outcome variable weight, measuring the patient's weight,
is simulated as follows: if the unit is a man, then weight¼Normal 200,30ð Þþ treat � τþNY , otherwise
weight¼Normal 150,30ð Þþ treat � τþNY . In such a setting, τ captures the causal effect of the impact of treat over
weight. Let us notice that the relationship between treat and weight is assumed to be linear and that unconfoundedness
holds given man, white, and overweight.

Therefore, the goal of the whole example is to estimate τ. Three different scenarios are simulated: one where the
impact is high (τ¼�30), one where it is smaller (τ¼�10), and one where there is no effect (τ¼ 0).

For each scenario, 1000 simulations were run. In each simulation, a dataset containing 10,000 observations is gener-
ated and an estimate of the ATE is computed using the following methods: OLS linear regression, exact (one-to-one)
matching estimator, full matching, stabilized IPW, and doubly robust AIPW.
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The OLS regression coefficient is retrieved by running a linear regression of weight over treat, man, white, over-
weight, and the interactions of the centered-around-the-mean versions of man, white, and overweight with treat. For
exact and full matching, MatchIT package is used. In exact matching, a complete cross of the covariates is used to form
subclasses defined by each combination of the covariate levels. If a subclass does not contain both treated and control
units is discarded. In this way, the remaining subclasses contain treatment and control units that are exactly equal in
the included covariates. On the other hand, in full matching, both treatment and control units (i.e., the “full” sample)
are assigned to a subclass and receive at least one match. In this case, the sum of the absolute distances between the
treated and control units in each subclass is as small as possible. Stabilized IPW estimates are found using the ipw
package, while the CausalGAM implementation is used to retrieve the Doubly Robust AIPW estimate.

Table 13 shows the mean of the estimated ATEs for each methodology over the 1000 runs and the relative standard
deviations. Comparing the estimated ATEs with the ground-truth coefficient, we point out that all the methodologies
are quite accurate as per mean values. Full matching shows the highest standard deviation (one order higher than the
others), while OLS regression has the smallest standard deviation. This is indeed expected as the relationship between
weight and treat is actually linear.

To conclude, it is worth noticing that on average OLS regression is the fastest, as it requires just 0.005 s to run. Exact
Matching and IPW are also pretty fast, taking around 0.05 s to compute the parameters. On the other hand, AIPW takes
around 30 s to estimate the parameter, while Full Matching requires almost 1 min on each run.

5 | CURRENT TRENDS AND POTENTIAL FUTURE RESEARCH

In recent years, the demand for trustworthy AI systems fostered the introduction of causality approaches in machine
learning (ML) research. As highlighted by Pearl (2018), causal reasoning is crucial to overcome current ML limitations.
For instance, the widespread usage of black-box models to socially sensitive decision making requires explainations of
the logic involved (Guidotti et al., 2019). In fact, traditional ML algorithms build on the correlation among variables
rather than on proper causal structures, with the risk of making wrong, biased, or harmful decisions.

In the eXplainable AI (XAI) branch, several works started exploiting causal frameworks to investigate black boxes
decisions (Moraffah et al., 2020). CXPlain system, developed by Schwab and Karlen (2019), exploits Granger-causality
to determine the importance of features for a black box model. Causal concepts, such as counterfactuals, are used in
XAI (Verma et al., 2020) for post-hoc explanations which answer the question “which changes in an instance's features
would have changed the ML model prediction?” Early approaches generate counterfactuals by solving an optimization
problem (Wachter et al., 2017). A number of refinements of the optimization constraints cover efficiency, robustness,
diversity, actionability, and plausibility. Zhao and Hastie (2021) exploit the connection between partial dependence
plots, an XAI tool, and the backdoor criterion, to extract causal information from black-box models. Beyond post-hoc
explanations, causal discovery algorithms can provide inherently interpretable methods (Xu et al., 2020).

Causal reasoning in AI also supports the enforcement of ethical concerns. In fact, spurious correlations and other
forms of bias can lead to discriminatory decisions again protected-by-law social groups. Fair ML aims at the design of
models that do not discriminate. The approach of (Kusner et al., 2017) defines fair decisions using counterfactual rea-
soning. Counterfactual fairness addresses what would have happened if membership to the protected group had been
different and the other features had been the same, by exploiting the use of DAGs and do-operations. For a comprehen-
sive review of fairness and causality, see Makhlouf et al. (2020).

Another concern about ML algorithms is the assumption that training and test set data are from the same distribu-
tion. In real environments, such an assumption is often not met due, for instance, to distribution shifts (Quiñonero-
Candela et al., 2009). Domain adaptation studies how to extend ML models that are trained in certain domains to
others. This branch can benefit from the usage of causal tools, as going beyond simple correlations is crucial to achieve
robustness. Research bridging causality with domain adaptation includes Zhang et al. (2015), where the authors study
which knowledge is transferable from one domain to another and find optimal target-domain hypothesis. In Pearl and
Bareinboim (2014), the authors present conditions for transferring the causal effects learned in experimental studies to
a new population where only observational studies are possible. Such a problem is identified as transportability. Trans-
portability requires full knowledge of the causal graph. An extension to cases where there is partial knowledge of the
causal structure is considered in Magliacane et al. (2018), where the authors build on JCI (Section 3.1).

Reinforcement learning (RL) is another branch of AI that can benefit from causal reasoning. In RL, an agent inter-
acts with an environment aiming to maximize its cumulative reward within a certain time horizon.
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Causality is a natural addition to model-based RL, where the agent has access to the state-transition probabilities, as
it allows to overcome some concerns, such as confounding factors. For instance, Bareinboim et al. (2015) explore the
relationship between causal models with unobserved confounders and the popular sequential decision-making setting
of Multi-Armed Bandits (MAB), where latent variables influence both the reward distribution and the agent's intuition.
Similar results for Markov Decision Processes (MDP), another popular setting for modeling sequential decision making,
are provided by Zhang and Bareinboim (2016). In Lee and Bareinboim (2018), the authors study how to identify the
best action in MABs, where an action corresponds to interventions on an arbitrary causal graph, taking into account
also latent factors. Unconfoundedness is also studied in Bruns-Smith (2021), where cases of persistent confounding vari-
ables are investigated. Another work worth mentioning for causal RL is Lattimore et al. (2016), where non-
interventional observations are used to improve the rate at which high-reward actions can be identified.

Let us turn now on the challenges posed by the usage of causality in AI and on a few open research directions.
First, there is, in general, a lack of knowledge regarding the causal model that underlies the data generating process

in the majority of the application context. This is a general concern, which also limits the validation of causal discovery
techniques, as few datasets are documented with a proper causal structure. This is a main challenge to be addressed,
which requires a multi-disciplinary effort to collect domain expertise. Legal initiatives which demand for trustworthy
AI development, such as the European Union draft regulation on AI,10 can be a stimulous for the development of
domain knowledge in the form of a causal graph in specific high-risk application domains.

Second, causal discovery research needs a boost to deal with non-tabular data, such as images and videos. Some
examples of works in this area can be found in Lopez-Paz et al. (2017) and Li et al. (2020). The former work deals with
retrieving causal signals in the context of images, while the latter studies the problem of learning causal structures from
videos. In this context, a repository with publicly available datasets and tools is currently missing, and it would be a cor-
nerstone for research in the area. The study of techniques designed for longitudinal data is also worth exploring, as few
methodologies are available to retrieve causal structures (Section 3.2). Dealing with high-dimensional data and missing
values is another critical open issue worth being addressed.

Third, some lines for future research can be outlined for causal inference. The assumption of unconfoundedness is
often too strong, which makes inapplicable the tools surveyed in Section 4.1.2. Additionally, the overlap condition
rarely holds in contexts with high-dimensional data. Also, the SUTVA assumption can quickly fail when network
effects take place. Finally, methodological guidelines should be developed for specific application contexts to inform
and guide practitioners in using the growing range of causal inference techniques.

6 | CONCLUSIONS

Causality is a dynamic and multidisciplinary field with both a long history and large developments to come. Several
new techniques have been proposed in the last decades, and new software has become available for practitioners to per-
form causality-related tasks.

In light of this, this survey paper recollected together the principal methodologies, tools, datasets, and metrics to
perform and evaluate both causal discovery and causal inference. Current trends of using causality in the realm of
(trustworthy) Artificial Intelligence was provided, including open issues and potential new directions. A companion
website (https://tinyurl.com/Causal-Discovery-and-Inference) is also available with additional resource lists and soft-
ware scripts.
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ENDNOTES
1 https://tinyurl.com/Causal-Discovery-and-Inference.
2 A skeleton is a graph with only undirected edges.
3 More examples can be found in the companion website.
4 https://bnlearn.com/.
5 https://cran.r-project.org/web/packages/pcalg/index.html, and in the Causality Workbench.
6 http://www.causality.inf.ethz.ch.
7 https://www.bnlearn.com/documentation/man/asia.html.
8 More examples can be found in the companion website.
9 http://math.furman.edu/dcs/courses/math47/R/library/lmtest/html/ChickEgg.html.
10 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206.
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