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Cross-species behavior analysis with attention-
based domain-adversarial deep neural networks
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Since the variables inherent to various diseases cannot be controlled directly in humans,

behavioral dysfunctions have been examined in model organisms, leading to better under-

standing their underlying mechanisms. However, because the spatial and temporal scales of

animal locomotion vary widely among species, conventional statistical analyses cannot be

used to discover knowledge from the locomotion data. We propose a procedure to auto-

matically discover locomotion features shared among animal species by means of domain-

adversarial deep neural networks. Our neural network is equipped with a function which

explains the meaning of segments of locomotion where the cross-species features are hidden

by incorporating an attention mechanism into the neural network, regarded as a black box. It

enables us to formulate a human-interpretable rule about the cross-species locomotion

feature and validate it using statistical tests. We demonstrate the versatility of this procedure

by identifying locomotion features shared across different species with dopamine deficiency,

namely humans, mice, and worms, despite their evolutionary differences.
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Neurodegenerative diseases including Parkinson’s disease
(PD), Alzheimer’s disease, and schizophrenia are dis-
orders characterized by motor dysfunctions. Since the

variables inherent to such diseases cannot be controlled directly
in humans, behavioral dysfunctions and their neural under-
pinnings have been examined in model organisms1,2. Assuming
that fundamental aspects of the behavior of humans are evolu-
tionarily conserved among other animal species, studies in model
organisms gained insights into understanding the underlying
mechanisms of those diseases3–6. In contrast to cognitive
abnormalities, motor dysfunctions can be externally assessed by
comparative behavioral analyses. A central concept of compara-
tive behavioral analysis is to identify human-like behavioral
repertoires, called behavioral phenotype, in animals, as animal
models of PD have gained insight into understanding the beha-
vioral and neural underpinning of symptoms underlying a spe-
cific disease7 and can potentially provide clues for the
development of therapeutics. However, behavioral analysis across
animal species could not be realized using conventional statistical
analyses because the body scale and locomotion methods vary
among species (Fig. 1a), resulting in wide variations in the spatial
and temporal scales of locomotion among species as shown in
Fig. 1b in which worms, beetles, and mice show similar loco-
motion trajectory, but differ in the velocity and spatial area
occupied.

Deep learning is a novel technique of automated feature
extraction, reducing the cost of manual feature design. We
employ it for automatically discovering scale-invariant locomo-
tion features shared among animal species. In the procedure (see
Fig. 1c), a human operator first feeds locomotion data from
animals of different species with different properties into a neural
network designed to extract cross-species locomotion features
using domain-adversarial training8. This is trained to extract
features that classify a trajectory into an appropriate class (e.g.,
healthy or PD) but cannot label the trajectory into an appropriate
domain (i.e., species), using a gradient reversal layer as shown in
Fig. 1d. Because these features are incapable of distinguishing
between domains, we can regard them as species-independent. In
contrast, because we can distinguish between trajectories
belonging to different classes using the extracted features, these
can be regarded as cross-species hallmarks of the diseases. By
designing a deep neural network so that it extracts features based
on the above idea, we can obtain locomotion features shared
across different species independent of their body scales and
locomotion methods.

Despite the human-level outstanding performances of the
neural network, the human operator cannot understand the
meaning of the extracted cross-species locomotion feature by
the deep neural network containing a huge amount of hidden
parameters. To address this issue, we design an explainable
architecture by incorporating an attention mechanism9,10 into the
domain-adversarial neural network, which identifies segments in
the trajectories where the cross-species features are hidden and
provides visualized trajectories and time-series of basic locomo-
tion features (e.g., speed) by highlighting the identified segments
(Fig. 1e, f). From these highlighted graphs, the operator can
understand cross-species locomotion features extracted by the
neural network. For instance, short-duration peaks in speed are
characteristic to PD mice (Fig. 1f). To explain why the neural
network pays attention to a certain segment and how it labels an
input time-series using attended segments within the time-series,
we employ decision trees. They help formulate a human-
interpretable rule about the cross-species locomotion feature.
Then, the operator proposes a hypothesis related to the loco-
motion features and performs a statistical test to validate it (see
Fig. 1c).

To demonstrate the performance of our proposed cross-species
behavioral analysis, we identified locomotion features shared
across different species with dopamine deficiency, namely
humans, mice, and worms.

Results
Attention-based domain-adversarial neural network. This study
assumes that locomotion data from two different species that
belong to two different classes, for example, PD individuals and
healthy individuals of humans and mice are given. The locomo-
tion data are used to train the neural network (see Fig. 1d). The
model inputs are time-series of primitive locomotion features
such as speed. The model has two types of outputs: estimated
domain and class of an input time-series.

The convolutional layers in the feature extraction block are
used to extract features, which are used to output the two
estimates. We introduce the gradient reversal layer8 before the 1st
domain predictor. When we train the network using the
backpropagation algorithm11, the gradient reversal layer multi-
plies the gradient with a negative constant value, making the
convolutional layers in the feature extraction block incapable of
estimating domains but classes.

In addition, we introduce an attention mechanism9 into the
model. The attention of a data point at each time slice is regarded
as the importance of the data point when the input time-series is
classified, indicating that attended data points are characteristic to
a class to which the input time-series belongs. The convolutional
layers in the attention computation block are used to compute
attention for each time slice. The attention is multiplied by
the extracted features to contrast the data points to which the
network pays attention. Furthermore, to make the way of
attention computation domain-independent, we introduce the
gradient reversal layer after the 2nd convolutional layer in the
attention computation block. The 2nd domain predictor outputs
domain estimate for each time slice using the output of the 2nd
convolutional layer in the attention computation block and we
make the network incapable of classifying the output of the 2nd
convolutional layer into domains using the gradient
reversal layer.

Here we briefly explain the difference between the network and
that proposed in DeepHL (DeepHL-Net)12, which is our prior
work. Because DeepHL-Net is trained on trajectories from a
single species, DeepHL-Net outputs only a class estimate, for
instance, healthy or PD class. Therefore, DeepHL-Net relies
mainly on attention mechanisms that detect segments character-
istic of a class. In contrast, in this study, the network is trained on
trajectories from two species, and outputs domain and class
estimates. To render the network incapable of distinguishing
between the two domains, we introduce domain-adversarial
training (gradient reversal). More specifically, gradient reversal is
introduced to render the ways of feature extraction and attention
computation domain-independent.

The network is trained to minimize the error of the class
estimates as well as maximize the errors of the two types of
domain estimates. However, achieving these conflicting goals at
the same time makes it difficult for the neural network to
converge. Therefore, we iterate the following procedures to train
the network.

1. We first train the network to minimize the error of the class
estimates as well as maximize the error of the domain
estimates by the 2nd domain predictor, which employs
outputs of the attention computation block to predict the
domain. Thus we extract important segments in the input
time-series for class estimation in a domain-independent
manner.
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Fig. 1 Cross-species behavior analysis using a domain-adversarial neural network with attention mechanism. a Differences in body scales among
different species. b Locomotion trajectories of different animals (worm, beetle, and mouse) differ at the spatial scale, but show similar patterns, left, black
lines depict locomotion trajectories of normal animals, right, red lines show trajectories of dopamine-deficient individuals, inset, expanded trajectories of
worms. c Our proposed procedure automatically finds a locomotion feature shared by different animals using deep learning, and exhibits the learned
locomotion features, enabling the human operator to extract a hypothesis and validate the statistical significance. d Proposed network architecture: the
feature extraction block learns feature representation that maximizes class prediction accuracy but minimizes domain prediction accuracy by using a
gradient reversal layer; the learned feature is assumed to be domain-independent because the feature is incapable of distinguishing between the domains,
while the attention computation block computes an attention value for each time slice in a domain-independent manner by using a gradient reversal layer. e
Highlighted trajectories of normal and Parkinson’s disease (PD) mice by attention values of the neural network that is trained to extract cross-species
locomotion features of worms and mice. f Example time-series of the speed of normal/PD mice highlighted by our network, where the attention level is
color-coded according to the scale bar shown on the right.
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2. Then we update the network to maximize the error of
domain estimates by the 1st domain predictor to accelerate
training in the next procedure.

3. Finally, we update the network to minimize the error of
class estimates as well as maximize the error of domain
estimates by the 1st domain predictor. With this procedure,
we can train the network to predict class labels correctly but
domain labels incorrectly.

See Methods for more details about the procedures.
In addition, to help understand the meaning of attention, we

employ machine learning tools to explain it. We construct a
decision tree that is trained to detect the attended segments by the
neural network using exhaustively handcrafted features listed in
Supplementary Table 1.

Furthermore, to interpret how the neural network predicts
classes using attended segments, we build a decision tree that is
trained to classify an input time-series using handcrafted features
extracted only from attended segments within the time-series. See
Methods for more details.

As above, an interpretable rule is extracted from our neural
network with the explainable architecture and/or by our methods
based on decision trees. After that, the interpretable rule is
investigated via a statistical test. To validate our procedure, we
prepared locomotion data from four different dopamine-deficient
species (humans, mice, beetles, and worms). We train our neural
network on data from two species to obtain an interpretable rule
and then validate this using data from all the species. We only
use data from two species because doing otherwise would increase
the complexity of the classification task, making it difficult for
the network to converge.

We have made the codes for our deep learning method and
decision tree construction available as Supplementary Software 1.

Network training on worm and mouse data. We use locomotion
data from worms with/without DOP-3, one of the D2 dopamine
receptors13, and from healthy and PD mice. A PD mouse is a
unilateral 6-hydroxydopamine (OHDA) lesioned model of PD
whose dopaminergic neurons in the compact part of substantia
nigra of a left or right hemisphere are lesioned with a neurotoxin
6-OHDA. Fig. 2a, b show the data collection protocols. Prior
studies discovered relevant locomotion features of PD mice1,2 as
well as of worms during odor avoidance behavior14,15. However,
locomotion features across these species have not been investi-
gated because the scales of their movements are significantly
different. We convert 2D locomotion data from worms and mice
into time-series of locomotion speed and then standardize each
time-series to normalize the range of the variables. Note that
because the lengths of the time-series of the speed of worms differ
from those of mice, we have undersampled the time-series from
the mice so that the lengths of the time-series are identical to
those from the worms. More details about the data are available
in Methods and Supplementary Table 2.

We randomly split the speed time-series data into training and
test sets, which are fed into the neural network. We deal with two
classes, DA(+) class (healthy mice and worms) vs. DA(−) class
(PD mice and worms lacking D2 dopamine receptors), and two
domains (mouse and worm). The classification accuracy is shown
in Fig. 2c, d, indicating that our network cannot distinguish the
domains but the classes. These results indicate that cross-species
features of DA(−) among mice and worms exist. Fig. 2e shows an
example of time-series of speed for worms and mice highlighted
by the trained model. From these highlighted time-series, we can
speculate that the neural network focuses on segments corre-
sponding to high speed for the DA(+) worms and mice.

Figure 2f shows a decision tree trained to detect the attended
segments. The root node and its right child node indicate that
attended segments correspond to segments with long-lasting high
speed. (High minimum speed in a sliding window, i.e., a high
moving minimum of speed, indicates keeping high speed.) Fig. 2g
shows a decision tree trained to classify an input time-series into
an appropriate class using features extracted from attended
segments within the time-series. As shown in the root node and
Fig. 2f, the neural network seems to pay attention to the long-
lasting high speed of the worms/mice using the attention
mechanism, and then distinguishes between DA(+) and DA(−)
by the skewness of speed within the attended segments. The
attended segments with positive skewness (≥0.360) are classified
into the DA(−) class. In contrast, the attended segments with
skewness smaller than 0.360 are classified into the DA(+) class
(between −0.397 and 0.360). Therefore, these results indicate that
the DA(+) worm/mouse keeps stable speed (small skewness)
when moving at high speed.

As above, we could extract an interpretable rule from the
trained neural network, i.e., DA(−) worms/mice cannot keep
high speed. To validate the hypothesis, we perform a statistical
test by computing the minimum speed within a time window
when the speed is high (see Supplementary Information for
details). As shown in Fig. 2h, we observe significant differences
between DA(+) and DA(−) for both the mice and worms.
Surprisingly, we could also observe significant differences
between PD and healthy humans when we performed the same
test, even though the neural network was trained only on the data
from the mice and worms. See Methods for details about the
human data.

As above, our method revealed that humans, mice, and worms
with disabilities in the dopaminergic system cannot keep high
speed even though their body scales and locomotion methods are
completely different. Our study employs worms with a lack of D2
dopamine receptors. Although the PD symptoms are considered
to be induced by various impairment of neural circuits such as
dopamine transmission impairment, morphological alterations of
the basal ganglia circuitry, and lack of dopamine receptors16–19, a
major source of the discovered locomotion feature shared by PD
mice and humans might ascribe the lack of D2 dopamine
receptors. The verification of this hypothesis is beyond the scope
of this study.

Network Training on Worm and Human Data. Next, we show
results obtained when the neural network is trained on data from
worms and humans. As for the human data (see Methods and
Supplementary Table 2), we convert time-series of foot-mounted
pressure sensors collected during walking into time-series of
locomotion speed.

We deal with two classes, i.e., DA(+) class (healthy worms and
humans) vs. DA(−) class (PD humans and worms lacking D2
dopamine receptors). Fig. 3a, b shows the classification accuracy,
indicating that our network seems to extract a cross-species
feature between humans and worms. Fig. 3c shows the time-series
of speed for DA(+)/DA(−) worms and humans highlighted by
the trained model. From these highlighted time-series, the neural
network seems to focus on segments corresponding to smooth
acceleration for the DA(+) worms and humans. (A decision tree
shown below also takes an acceleration feature as a root node.)
Fig. 3d shows the time-series of acceleration for worms and
humans, as segments of DA(+) worms/humans corresponding to
acceleration are attended.

Figure 3e shows a decision tree that is trained to detect the
attended segments. The root node and its right child node indicate
that attended segments correspond to segments with high
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acceleration values as well as high minimum speed values within a
time window. This result indicates that the neural network focuses
on a moment of long-lasting acceleration. Fig. 3f shows a decision
tree that is trained to classify an input time-series into an

appropriate class using features extracted from attended segments
within the time-series. As shown in the root node and Fig. 3e, the
neural network seems to pay attention to long-lasting accelerations
of the DA(+) worms/humans using the attention mechanism, and
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Fig. 2 Analysis of DA(+)/DA(−) mice and worms (DA: dopamine). a A Parkinson’s disease (PD) mouse walks in the experimental setup, where
dopaminergic neurons in the substantia nigra pars compacta were unilaterally lesioned with 6-hydroxydopamine. b The experimental setup (left) for
monitoring the worm’s trajectory (right). c Classification accuracies of our network for DA(+)/DA(−) classes. d Classification accuracies of our network
for the 1st and 2nd domain estimates, where the random guess ratio is 0.5 (1/2); see Supplementary Information for the detailed results of the domain
estimates. e Example time-series of speed of DA(+)/DA(−) mice and worms highlighted by our network. f A decision tree for explaining the meaning of
attention by the neural network, i.e., classifying attended (`attention') and non-attended (`none') segments, where features were normalized for each
trajectory (min–max normalization); we show only the 1st and 2nd layers and each histogram shows a tree node of the tree, and a feature used in the node
is indicated at the bottom of the histogram; a histogram of each node is constructed from training instances' values of a feature used in the node, instances
having feature values smaller than a threshold go to the left child, the threshold value is shown at the bottom of each histogram associated with a black
arrow and pie charts at the bottom of the tree (leaf nodes) show distributions of training instances classified by the tree. g A decision tree for explaining
classification, where we show only the 1st layer. h Distributions of averaged minimum speed within a time window when the speed is high for mice/worms;
to compute the averaged minimum speed, we compute the rolling minimum of the normalized speed within segments with high speed (top 20% average
speed) for each trajectory (see Supplementary Information for details) and the box plot shows the 25–75% quartile, with embedded bar representing the
median and the lower/upper whiskers show Q1-1.5*IQR and Q3+1.5*IQR, respectively, where IQR is the interquartile range, Q1 is 25% quartile, and Q3 is
75% quartile; significant differences between DA(+) and DA(−) for both the mice and worms are observed (worm by the Brunner–Munzel test:
p= 7.61 × 10−4: w= 3.48; df= 90.41; effectsize= 0.65; n= 162 from DA(+) worms; n= 47 from DA(−) worms; mouse by the Welch’s t-test:
p= 2.53 × 10−3; t= 3.07; df= 131.45; effectsize(r)= 0.45; n= 88 10min trajectories from DA(+) mice; n= 113 10min trajectories from DA(−) mice); a
significant difference between DA(+) and DA(−) for the humans is also observed by the Welch’s t-test (p= 0.03; t= 2.25; df= 123.83;
effectsize(r)=− 0.32; n= 78 from DA(+) humans; n= 163 from DA(−) humans); the p value is two sided; see Supplementary Information for the
normality tests of the distributions, which were used to select methods of statistical test for comparing two groups.
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then distinguishes between DA(+) and DA(−) simply by the
minimum of speed within the attended segments.

From the above results, we can say that the DA(−) worms/
humans present unstable speed while accelerating (lower
minimum speed during high acceleration). To validate the
hypothesis, we perform a statistical test. Based on the decision
trees, we compute the minimum speed within a time window

when the average acceleration is high (see Supplementary
Information for details). As shown in Fig. 3g, we observe
significant differences between DA(+) and DA(−) for both
humans and worms. Interestingly, we could also observe
significant differences between the two classes of mice.

As above, we could notice that the speed of these animals is
unstable when accelerating. PD mice used in this study (6-OHDA
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Classification accuracies of our network for the 1st and 2nd domain estimates; see Supplementary Information for the detailed results of the domain
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Information for details); significant differences between DA(+) and DA(−) for both humans and worms are observed (worm by the Brunner–Munzel test:
p= 0.03; w= 2.26; df= 101.91; effectsize= 0.60; n= 162 from DA(+) worms; n= 47 from DA(−) worms; human by the Welch’s t-test: p= 0.02;
t=−2.35; df= 126.89; effectsize(r)=−0.34; n= 78 from DA(+) humans; n= 163 from DA(−) humans); a significant difference between DA(+) and
DA(−) for the mice is also observed by the Welch’s t-test (p= 0, 01; t= 2.57; df= 131.63; effectsize(r)= 0.38); n= 88 10min trajectories from DA(+)
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the median and the lower/upper whiskers show Q1-1.5*IQR and Q3+1.5*IQR, respectively, where IQR is the interquartile range, Q1 is 25% quartile, and Q3
is 75% quartile.
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mouse model of PD) are considered to exhibit motor symptoms
of akinesia and bradykinesia20. The discovered locomotion
feature is similar to the symptom of akinesia. Our study reveals
that a similar feature is also found in worms lacking D2 dopamine
receptors, indicating that the receptors play an important role in
the symptom.

Network training on worm and beetle data. Tonic immobility
(sometimes called death-feigning behavior or thanatosis) has
been observed in many species and it is thought to have evolved

as an anti-predator strategy21. The selection regimes for a short or
long duration of tonic immobility have been established in the red
flour beetle, Tribolium castaneum22. We use trajectory data of
beetles collected from the short and long selection regimes on a
treadmill (Fig. 4a; short: 20 beetles; long: 20 beetles). The long
selection regime showed significantly lower levels of brain
dopamine expression and lower locomotor activity than those of
the short selection regime23. Further, Uchiyama et al.24 showed
518 differentially expressed genes between the selection regimes.
As expected from physiological studies described above, genes
associated with the metabolic pathways of tyrosine, a precursor of
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Brunner–Munzel test: p= 2.99 × 10−8; w=− 6.22; df= 71.50; effectsize= 0.18; n= 40 from DA(+) beetles; n= 40 from DA(−) beetles); a significant
difference between DA(+) and DA(−) for the mice is also observed by the Welch’s t-test (p= 0.02; t=− 2.37; df= 112.94; effectsize(r)=− 0.35);
n= 88 10min trajectories from DA(+) mice; n= 113 10min trajectories from DA(−) mice; the p-value is two sided. The box plot shows the 25–75%
quartile, with embedded bar representing the median and the lower/upper whiskers show Q1-1.5*IQR and Q3+1.5*IQR, respectively, where IQR is the
interquartile range, Q1 is 25% quartile, and Q3 is 75% quartile.
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dopamine, were differentially expressed between the short and
long selection regime; these enzyme-encoding genes were
expressed at higher levels in the long selection regime than in the
short selection regime24. Therefore, we train the neural network
with the long selection regime corresponding to the DA(−) class.

Figure 4b, c show the classification accuracy. Fig. 4d shows
trajectories of DA(+)/DA(−) worms and beetles highlighted by
the trained model, indicating that the network focuses on
segments before the movement direction changes in many cases.
Fig. 4e shows the time-series of speed for DA(+)/DA(−) worms
and beetles highlighted by the trained model. As shown in these
figures, the network focuses on segments before the local minima
of speed (corresponding to direction changes, e.g., t= 17, 23 for
DA(+) beetle). Before the turns, DA(+) worms and beetles seem
to quickly decrease their speed. In contrast, DA(−) worms and
beetles do not seem to smoothly decrease their speed (e.g., t= 15,
20 for DA(−) beetle). Based on the observation, we compare the
difference in acceleration before turns between the DA(+) and
DA(−) classes (see Supplementary Information for details). As
shown in Fig. 4f, we could observe significant differences between
DA(+) and DA(−) for both beetles and worms. Yamazaki et al.15

revealed that the dopamine-deficient worms are abnormal in
speed changes before the initiation of turns, a result which is in
keeping with the findings of our study. In addition, recent
analysis on DNA sequences of beetles25 revealed that DA(−)
beetles have large mutations in dopamine-related genes compared
with DA(+) beetles, suggesting that DA(−) beetles exhibit
abnormal walking behaviors compared with DA(+) beetles
due to changes to the dopaminergic system. We could also
observe significant differences between the two classes of mice.
Because we only have speed time-series for the human data, we
could not perform this test for humans.

As above, we observed that DA(−) animals exhibit significantly
high acceleration before they change the moving direction. This
indicates that the animals with dopamine deficiency cannot
smoothly decrease the speed before turns. Specifically, this
hypothesis found by our method focuses on the transition from
the "running” mode to the "turn” mode. The disability in
locomotion mode transition caused by PD has been studied on
mice and humans20,26. These lines of evidence suggest that the
disability is caused by combined factors constituting morpholo-
gical abnormalities of the neural circuitry and changes of the DA
transporter and in the DA receptor densities induced by the lack
of DA. On the other hand, our cross-species comparative analysis
proposes a hypothesis that the disability can be simply explained
by the deficiency of dopamine expression level.

Discussion
We propose an attention-based domain-adversarial neural net-
work to study cross-domain behavior by analyzing locomotion
data from different species. Comparative behavioral analysis
between two classes has been performed by using classic classi-
fication methods and manual feature design15,27,28 as well as
studies on locomotion features of PD mice using statistical
analysis1,2. However, these features are not necessarily observed
in other species. In fact, we could not find significant differences
between DA(+) and DA(−) for humans (and worms) by calcu-
lating the ambulation period, widely used to evaluate PD symp-
toms of mice1 (see Supplementary Figure 1). DeepHL, which is
our prior work, is a pioneering study on deep learning-assisted
animal behavior analysis using attention mechanisms12. How-
ever, DeepHL focuses only on behavioral data from a single
species and cannot be used to conduct cross-species behavior
analysis.

To demonstrate the usefulness of the proposed neural network,
we found cross-species locomotion features among species that
are far away from each other in the evolutionary lineage. The
study reveals that the DA(−) humans, mice, and worms cannot
keep high speed. In addition, the speed of the DA(−) humans,
mice, and worms is unstable when accelerating. Moreover, the
DA(−) worms, mice, and beetles present significantly high
acceleration before they changing direction. We believe that
discovering such hypotheses from time-series trajectory data
obtained from multiple species is difficult. In this study, we
focused on specific important moments in the time-series high-
lighted by the attention mechanisms, e.g., moments of accelera-
tion and moments before the turn. However, it is difficult to focus
on such moments by manually analyzing trajectories from mul-
tiple species.

While training the neural network using data from two species,
the discovered locomotion features from one of them were
observed in other species as well, indicating that the neural net-
work captures latent locomotion features across different species.
As a result, we propose the hypothesis that various aspects of
motor dysfunction across animal species can be explained by the
deficiency of dopamine expression levels. Our method could thus
be useful in identifying animal models for a variety of Parkinson’s
disease symptoms such as akinesia, bradykinesia, tremor, rigidity,
and postural instability.

In practice, researchers may label trajectories mistakenly. For
example, some DA(+) trajectories can be mistakenly labeled as
DA(−). Our additional investigation on the robustness of our
method against potential labeling errors revealed that, even when
5% of erroneous labels are included, our model maintains high
classification accuracy. See Supplementary Information and
Supplementary Figure 4 for more detail.

Here we discuss the rationale for using a decision tree in the
process of explaining the meaning of attended segments. The aim
of this process is to help understand the meaning of the attended
segments. It is therefore important to explain the meaning of
attention using a small number of features. Even though regres-
sion models enable us to detect important features highly corre-
lated with the attended segments, the regression models suffer
from multicollinearity. Because some locomotion features–such
as speed and acceleration–are correlated with each other, it is
difficult to use the regression models in this procedure. Although
the support vector machine (SVM) is a widely-used classifier and
achieves high classification accuracy, the interpretability of the
model is poor because the SVM learns a classification rule in a
high-dimensional feature space when many features are available.
Another possible approach is to use a method for evaluating
locomotion features. This approach provides us with features
useful in detecting attended segments. However, unlike decision
trees, this approach does not provide information about thresh-
olds, making it difficult to understand the meaning of the
attended segments (see Supplementary Information). In contrast,
a decision tree describes classification rules using a hierarchy of
if-then rules with thresholds, enabling us to easily understand the
meaning of the attended segments based on a small number of
features existing in shallower nodes in the tree. We believe that
the findings by our method are intuitive and can be easily
understandable by non-computer scientists.

Domain-adversarial neural networks have been originally
proposed for transfer learning8. To the best of our knowledge,
this is the first study that employs them for highlighting cross-
species behavioral features. Moreover, this study introduces the
attention mechanism to the domain-adversarial network in order
to interpret the discovered cross-species behavioral features by
the neural network.
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The proposed method can be potentially applied to evaluate
animal models of other diseases, accelerating therapeutic drug
development. Our approach enables the formation of inter-
pretable rules for evaluation, preventing the evaluation of diseases
using a black-box model. In addition, we believe that our method
can be applied to human society and industrial domains. For
example, our method enables the extraction of inherent loco-
motion features of high-performing taxi drivers across different
cities. Moreover, our method enables the extraction of inherent
locomotion features of high-performing workers performing
order-picking in different logistics centers. Because these features
are expected to be used to train low-performing drivers/workers,
the interpretability of the features is important.

This study employs trajectory data from two species to train a
neural network, and investigates whether a found cross-species
feature constitutes a significant difference in another species.
However, when, for example, we have trajectory data from
100 species, it is difficult to discover locomotion features shared
across the 100 species from a network trained on data from only
two species. We therefore believe that improving our method so
that it can deal with more than two species will be important in
future work.

A potential limitation of our method is the trade-off between
the interpretability and statistical significance of the finding (a
rule obtained from our method). In our experiment, we obtained
interpretable rules regarding highlighted segments based on
shallow nodes in decision trees. In general, a rule with high
interpretability can yield low statistical significance. If we can
automatically make a rule while controlling its interpretability,
such as by using tree nodes including deeper levels, we can also
control the statistical significance of the rule. We believe that
developing a technology that enables the control of interpret-
ability depending on a user’s needs can be one of the most
important directions toward explainable artificial intelligence.

Methods
Worm data. Young adult wild-type hermaphrodite Caenorhabditis elegans (C. elegans)
were cultivated with the bacteria OP50 and handled as described previously29. The C.
elegans wild-type Bristol strain (N2) were obtained from the Caenorhabditis Genetics
Center (University of Minnesota, USA), and dop-3(tm1356) was obtained from
National Bioresource Project (Japan) and backcrossed with N2 two times to
generate KDK1.

The behavioral trajectories of wild-type ("normal”) and dop-3 worms were
monitored during avoidance behavior to the repulsive odor 2-nonanone (normal:
162; dop-3: 47)30. During the odor avoidance, naive wild-type and dop-3 worms
exhibit essentially similar behavioral responses although they behave differently
after pre-exposure to the odor, indicating that their naive response to the odor is
not dependent of dopamine signaling, while their response after pre-exposure is30.
Thus, in this study, we focused on the behavior of wild-type and dop-3 worms after
pre-exposure to the odor. The odor avoidance behavior was monitored with a high-
resolution fixed USB camera for 12 min at 1 Hz. Because the worms do not exhibit
odor avoidance behavior during the first 2 min because of the rapid increase in
odor concentration31, only the data from the following 10 min (i.e., 600 s) was
used14. We employed Move-tr/2D (Library Inc., Japan; v. 8.31) to track to
automatically track the worms’ centroids in the camera images. A part of the
original data had already been analyzed and published14,15, being re-analyzed in
this study.

We trimmed /undersampled the trajectory data in order to make data lengths of
all trajectories (of humans, mice, and beetles) identical before feeding them into the
neural network. For more details about the trajectory data of the four animals, see
Supplementary Table 2.

Mouse data. Nine C57BL/6J mice purchased from Shimizu Laboratory Supplies
(Kyoto, Japan) (male or female; 6–17 months old at the beginning of the experi-
ment) were housed in groups at 23 ∘C and humidity of 40–60%, with food and
water provided ad libitum in a 12 h light and 12 h dark cycle (day starting at 09:00).
All tests were performed during the light period. For PD mice, under isoflurane
anesthesia, 6-OHDA (4mg/ml; Sigma) was injected through the implanted can-
nulae (AP -1.2 mm, ML 1.1 mm, DV 5.0 mm, 2 μl). The PD mice were allowed to
recover for at least one week before post-lesion behavioral testing. After the mice
were sacrificed by pentobarbital sodium overdose and perfused with formalin, their
brains were frozen and cut coronally at 30 μl with a sliding microtome. For

immunostaining, sections were divided into six interleaved sets. Immunohis-
tochemistry was performed on the free-floating sections. Sections were pretreated
with 3% hydrogen peroxide and incubated overnight with primary antibody mouse
anti-tyrosine hydroxylase (1:1000; Millipore). As a secondary antibody, we used
biotinylated donkey anti-mouse IgG (1:100; Jackson ImmunoResearch Inc.) fol-
lowed by incubation with avidin-biotin-peroxydase complex solution (1:100;
VECTASTAIN Elite ABC STANDARD KIT, Vector laboratories). To estimate the
degree of dopaminergic cell loss, we divided the number of cells manually counted
across three sections of the SNc (most rostral, most caudal, and the intermediate
between them) of the lesioned hemisphere from that of the non-lesioned
hemisphere.

We collected 52 trajectories of five normal mice and four unilateral 6-OHDA
lesioned mouse models of PD while they freely walked for 10 min in an open arena
(60 × 55 cm, wall height= 20 cm; normal: 22, PD: 30). The trajectories were
tracked from the animal’s head position extracted from images captured by a
digital video camera (60 fps) mounted on the ceiling of the enclosure. We used
custom software based on Matlab (R2018b, Mathworks, Ma, USA) and LabVIEW
(Labview 2018, National Instruments, TX, USA) to track the mice. Two sets of
small red and green light-emitting diodes mounted above the animal’s head were
used to track its location in each frame. We then created 150 s segments by splitting
each trajectory because training a neural network requires a number of trajectories.
We used 201 segments in total (normal: 88, PD: 113) collected from the mice. Note
that we excluded 150 s segments that contain no movements of a mouse.

Human data. We employed a publicly available gait data set of normal and Par-
kinson’s disease humans (Gait in Parkinson’s Disease Dataset)32. In brief, this data
set contains measures of gait from 93 patients with idiopathic PD and 73 healthy
controls. The data set includes the vertical ground reaction force records from force
8 sensors underneath each foot with the 100 Hz sampling rate as the subjects
walked at their usual for approximately 2 min. Note that our study did not use data
collected during dual-tasking (serial 7 subtractions). Because the duration of almost
all of the data were 82 s, we also did not use data shorter than 82 s.

Beetle data. We analyzed 80 walking trails of beetles collected from short and long
selection regimes strain beetles on a treadmill system33. We used custom software
based on OpenCV (https://opencv.org/; v. 2.4.9) for tracking the beetles. The stock
population of Tribolium castaneum used in the present study has been maintained
in laboratories for more than 25 years. The beetles are fed a blend of whole wheat
flour and brewer’s yeast at a 19:1 ratio. They are kept in an incubator (Sanyo,
Osaka, Japan) maintained at 25 ∘C under a 16 h light:8 h dark cycle. The selection
regimes with short and long duration of tonic immobility were used34. The number
of beetles derived from the short selection regime (long selection regime) is 20,
consisting of 10 males and 10 females.

Preprocessing of trajectories. We first convert a trajectory into a time-series of
speed. Let P be an input trajectory that consists of a sequence of two-dimensional
positions with timestamps:

P ¼ ½P1;P2; :::; PT �
¼ ½ðt1; x1; y1Þ; ðt2; x2; y2Þ; :::; ðtT ; xT ; yT Þ�

ð1Þ

For the trajectories of animals whose absolute coordinates are meaningless, such as
those of animals that freely move on an agar plate, the relative position analysis is
required. Therefore, we convert P into S, which is a sequence of speeds:

S ¼ ½s2; s3; :::; sT � ð2Þ
where si is the speed at the time i and described as

si ¼
Dist ðPi;Pi�1Þ
ti � ti�1

; ð3Þ

where Dist(. , . ) computes the Euclidean distance between two coordinates. After
this, we normalize the speed time-series for each trajectory. Each speed time-series
is associated with a class label and domain label.

Processing of human gait data. Because the stride time (i.e., the time elapsed
between the first contact of two consecutive footsteps of the same foot) is pro-
portionate to the walking speed35, we first compute time-series of stride time for
each foot. We then combine the two time-series, i.e., by sorting data points of stride
times from the two time-series by their time stamps. After that, we standardize a set
of speed time-series. Each speed time-series is associated with a class label and
domain label.

Attention-based domain-adversarial deep neural network. Here, we explain the
proposed deep neural network model shown in Fig. 1d in detail. The input of the
model is a speed time-series S with the length of l. In each 1D convolutional layer
of the feature extraction block, we extract features by convolving the input time-
series through the time dimension using a filter with a width of Ft. We use a stride
(step size) of 1 sample in terms of the time axis. In addition, to reduce overfitting,
we employ dropout, which is a simple regularization technique in which randomly
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selected neurons are dropped during training36. The dropout rate used in this study
is 0.5.

We also employ 1D convolutional layers in the attention computation block to
compute attention time-series from the input time-series S. The attention layer in
the attention computation block computes attention from an output matrix of the
2nd convolutional layer Z as follows.

a ¼ softmaxðWa2 � tanhðWa1Z
T ÞÞ; ð4Þ

where a is an attention vector of length l that shows the importance (i.e., attention)
of each data point in the input time-series. Because the attention layer is
implemented as two densely connected layers with no bias, Wa1 and Wa2 show the
weight matrices of the 1st and 2nd densely connected layers, respectively. The
softmax function ensures that the output values sum to 1, and the tanh function
limits the output value of its input to a value between -1 and 1. The attention is
multiplied by the outputs of the 2nd convolutional layer in the feature extraction
block to contrast the segments to which the network pays attention.

The extracted features multiplied by the attention are fed into the class
predictor and the 1st domain predictor, which are composed of two densely
connected layers. The 1st densely connected layers employ the tanh activation
function. The 2nd layers (output layers) employ the softmax function. The class
predictor and 1st domain predictor output class and domain estimates,
respectively. With the gradient reversal layer in the 1st domain predictor, we make
the network incapable of estimating domains from extracted features, which is
described in detail later.

The output of the 2nd convolutional layer of the attention computation block is
fed into the 2nd domain predictor for each time step. The 2nd domain predictor
also consists of two densely connected layers. The 1st densely connected layer
employs the tanh activation function. The 2nd layer (output layer) employs the
softmax function. The 2nd domain predictor outputs a domain estimate for each
time step. With the gradient reversal layer in the 2nd domain predictor, we make
the way of attention computation domain-independent.

Network training. We train the neural network using the backpropagation
algorithm11. The gradient reversal layer in the network multiplies the gradient with
a negative constant value (−μ) when we train the network using the back-
propagation algorithm. Because the parameters in the feature extraction and
attention computation blocks are updated so that the domain estimates become
worse, the gradient reversal layer makes the neural network incapable of distin-
guishing between the two domains. Note that achieving these different goals at the
same time makes it difficult for the neural network to converge. Therefore, we
iterate the three procedures described in the main text to train the network. Here
we explain the procedures in detail.

The first procedure minimizes the error of the class estimates as well as
maximizes the error of the domain estimates by the 2nd domain predictor by
minimizing

Eðθf ; θa; θc; θd2Þ ¼
1
n
∑
n

i¼1
Li
cðθf ; θa; θcÞ � λ1

1
n
∑
n

i¼1
Li
d2ðθa; θd2Þ; ð5Þ

where θf, θa, θc, θd2 represent network parameters of the feature extraction block,
attention computation block, class predictor, and 2nd domain predictor,
respectively, n is the number of training instances (time-series), Li

cðθf ; θa; θcÞ
shows the loss of class prediction, and Li

d2ðθa; θd2Þ is the loss of domain prediction
by the 2nd domain predictor. The hyperparameter λ1 is used to trade-off between
the two-loss functions. Li

cðθf ; θa; θcÞ in Equation (5) shows the binary cross-
entropy loss for class estimates described as follows

Li
cðθf ; θa; θcÞ ¼ �ðyi � log pCðSijθf ; θa; θcÞ þ ð1� yiÞ � log ð1� pCðSijθf ; θa; θcÞÞÞ;

ð6Þ
where yi is a ground truth class label (0 or 1) of the i-th time-series Si and
pC(Si∣θf, θa, θc) is a class estimate by the class predictor. Li

d2ðθa; θd2Þ shows the
binary cross-entropy loss for attention for each time step described as follows

Li
d2ðθa; θd2Þ¼� 1

T � 1
∑
T

t¼2
di � log pDðsi;t jθa; θd2Þþð1�diÞ � log ð1�pDðsi;t jθa; θd2ÞÞ;

ð7Þ
where di is a ground truth domain label (0 or 1) of the i-th time-series, si,t is a data
point in the i-th time-series at time t and pD(si,t∣θa, θd2) is a domain estimate by the
2nd domain predictor.

The second procedure maximizes the error of the domain estimates by the 1st
domain predictor by minimizing

Eðθf ; θa; θd1Þ ¼
1
n
∑
n

i¼1
Li
d1ðθf ; θa; θd1Þ; ð8Þ

where θd1 is the network parameter of the 1st domain predictor and Li
d1ðθf ; θa; θd1Þ

is the loss of domain prediction by the 1st domain predictor. Li
d1ðθf ; θa; θd1Þ in

Equation (8) shows the binary cross-entropy loss for domain estimates described as

follows

Li
d1ðθf ; θa; θd1Þ ¼ �ðdi � log pDðSijθf ; θa; θd1Þ þ ð1� diÞ � log ð1� pDðSijθf ; θa; θd1ÞÞÞ;

ð9Þ
where pD(Si∣θf, θa, θd1) is a domain estimate by the 1st domain predictor.

The third procedure consists in minimizing

Eðθf ; θa; θc; θd1Þ ¼
1
n
∑
n

i¼1
Li
cðθf ; θa; θcÞ � λ2

1
n
∑
n

i¼1
Li
d1ðθf ; θa; θd1Þ; ð10Þ

where λ2 is a trade-off hyperparameter of the two-loss functions.
We employ the algorithm Adam37 in each procedure to minimize the loss

functions. Note that, because parameters in the network are unstable in the earlier
epochs, using large μ makes it difficult for the network to converge. Therefore, in
the earlier epochs, we use small μ to properly train the feature extraction block and
then gradually increase μ as follows.

μ ¼
0 ð0≤ i < T1Þ

Lþ1

L�ðα�β
i�T1

T2�T1 Þþ1
� 1 ðT1 ≤ i < T2Þ

L ðT2 ≤ iÞ

8
>><

>>:

ð11Þ

where i is the epoch number, L is the upper bound of μ, α= 1.4, and β= 10. T1 and
T2 are empirically determined as T1 ¼ 1

10 �#epochs and T2 ¼ 1
1:2 �#epochs, where

#epochs indicate the number of training epochs.

Decision tree for explaining attention. We build a decision tree that explains the
meaning of attention by the network using attention outputs by the network as
training labels. We first extract a feature vector from the input time-series for each
time slice. We extract interpretable features for each data point described in Sup-
plementary Table 1. We then label the feature vectors according to attention outputs
by the network. When an attention value at time t is higher than a given threshold,
we label a feature vector at time t as "attended.” Otherwise, we label as "none.” Note
that, because the softmax function in the attention computation block ensures that
all attention values in an input time-series sum to 1, we set the threshold as 1

T�1.
Then we train a binary classifier using the labeled feature vectors. With the trained
decision tree, the user can understand the meaning of the extracted attention.

Decision tree for explaining classification. We build a decision tree that explains
the meaning of classification by the attention-based neural network. We first
construct a feature vector for each input time-series by averaging a feature vector
prepared for each sliding time window, which is extracted in the same way as that
of training a decision tree for explaining attention. Note that, when averaging, we
calculate the weighted average according to the attention value by the network. For
example, when an attention value of an input time-series at time t is at, we multiply
at to a feature vector at time t. By doing so, we can build a rule mainly focusing on
attended segments. After that, we train a decision tree using the averaged feature
vectors with their class labels (e.g., DA(+) or DA(−) class). With the trained
decision tree, the user can understand the meaning of the classification by taking
into account attention by the network.

Ethics statement. The study on mice was approved by the Doshisha University
Institutional Animal Care and Use Committees.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data of mice, beetles, and worms are available with Supplementary Software 1 and
https://doi.org/10.5281/zenodo.514229438. Source data are provided with this paper.

Code availability
The software used in this study are available as Supplementary Software 1. The most
recent version of the software is available at https://doi.org/10.5281/zenodo.514229438.
The software was implemented based on Python (v.3.6.0), numpy (v.1.15.2), scikit-learn
(v.0.20.0), scipy (v.1.2.1), and tensorflow (v.1.12.0).
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