Neural control of affiliative touch in prosocial interaction
Contact Information
Keywords
Weizhe Hong, Ye Emily Wu, whong@ucla.edu, ye.wu@ucla.edu
N/A
Abstract
The ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans1-3. Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others1-6. Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics. However, the neural circuits that promote prosocial affiliative touch have remained unclear. Here we show that mice exhibit affiliative allogrooming behaviour towards distressed partners, providing a consoling effect. The increase in allogrooming occurs in response to different types of stressors and can be elicited by olfactory cues from distressed individuals. Using microendoscopic calcium imaging, we find that neural activity in the medial amygdala (MeA) responds differentially to naive and distressed conspecifics and encodes allogrooming behaviour. Through intersectional functional manipulations, we establish a direct causal role of the MeA in controlling affiliative allogrooming and identify a select, tachykinin-expressing subpopulation of MeA GABAergic (γ-aminobutyric-acid-expressing) neurons that promote this behaviour through their projections to the medial preoptic area. Together, our study demonstrates that mice display prosocial comforting behaviour and reveals a neural circuit mechanism that underlies the encoding and control of affiliative touch during prosocial interactions.
Citation
Wu, Y. E., Dang, J., Kingsbury, L., Zhang, M., Sun, F., Hu, R. K., & Hong, W. (2021). Neural control of affiliative touch in prosocial interaction. Nature, 599(7884), 262–267. https://doi.org/10.1038/s41586-021-03962-w
DOI
10.1038/s41586-021-03962-w
EWB Constructs:
positive affect
EWB Measures:
prosocial interaction
data availability:
Yes
data availability details:
email corresponding author
brain imaging paradigm:
medial amygdala
brain region/circuit:
Exclusion Criteria:
N/A
Inclusion Criteria
N/A
Non-EWB Behavioral
Measures:
foot shock, forced swim, acute restraint
First author:
Ye Emily Wu
species:
mouse
sample size:
40
study design:
case control
longitudinal data?
No
younger controls?
N/A
interventions:
Examined neural control of allogrooming in mice exposed to distressed conspecifics
study population:
N/A
sex (% female):
50%
ethnicity (%white)
N/A
Age (mean, sd):
10-12 weeks
biological/Physiological Measures:
N/A